

 www.adeept.com

Content

About Arduino .. - 1 -

Lesson 1 Blinking LED ... - 2 -

Lesson 2 Controlling an LED with a button .. - 7 -

Lesson 3 LED Flowing Lights .. - 13 -

Lesson 4 Breathing LED ... - 17 -

Lesson 5 Potentiometer .. - 21 -

Lesson 6 ActiveBuzzer .. - 25 -

Lesson 7 Relay module ... - 30 -

Lesson 8 Controlling a RGB LED by PWM ... - 34 -

Lesson 9 TiltSwitch .. - 38 -

Lesson 10 RotaryEncoder .. - 41 -

Lesson 11 LCD1602 ... - 46 -

Lesson 12 Photoresistor ... - 51 -

Lesson 13 Using a thermistor to measure the temperature - 54 -

Lesson 14 Temperature alarm ... - 58 -

Lesson 15 7-Segment ... - 60 -

Lesson 16 Serial Port... - 64 -

Lesson 17 DC Motor Fan ... - 70 -

Lesson 18 Controlling Servo motor .. - 75 -

 www.adeept.com

Lesson 19 UltrasonicDistanceSensor .. - 78 -

Lesson 20 Ultrasonic control Servo .. - 82 -

Lesson 21 Combined LED Experiment ... - 84 -

Lesson 22 Ultrasonic Fan ... - 86 -

Lesson 23 Reversing Radar ... - 88 -

 www.adeept.com

- 1 -

About Arduino

What is Arduino?

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. It's intended for anyone making interactive projects.

ARDUINO BOARD

Arduino senses the environment by receiving inputs from many sensors, and
affects its surroundings by controlling lights, motors, and other actuators.

ARDUINO SOFTWARE

You can tell your Arduino what to do by writing code in the Arduino
programming language and using the Arduino development environment.

Before the development of Arduino program, the first thing you have to do is to
install Arduino IDE software. The software provides you with the basic
development environment that is required for developing Arduino program.
You need the following URL to download Arduino IDE:
http://www.arduino.cc/en/Main/Software

For different operating system platforms, the way of using Arduino IDE is
different. Please refer to the following links:
Windows User：http://www.arduino.cc/en/Guide/Windows
Mac OS X User：http://www.arduino.cc/en/Guide/MacOSX
Linux User：http://playground.arduino.cc/Learning/Linux

For more detailed information about Arduino IDE, please refer to the following

https://youtu.be/BsTDVB8B240

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/Windows
http://www.arduino.cc/en/Guide/MacOSX
http://playground.arduino.cc/Learning/Linux
https://youtu.be/BsTDVB8B240

 www.adeept.com

- 2 -

Lesson 1 Blinking LED
Overview

In this tutorial, we will start the journey of learning Arduino UNO. In the first
lesson, we will learn how to make a LED blinking.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* 220Ω Resistor
- 1* LED
- 1* Breadboard
- 2* Jumper Wires

Principle

In this lesson, we will program the Arduino's GPIO output high(+5V) and low
level(0V), and then make the LED which is connected to the Arduino’s GPIO
flicker with a certain frequency.

1. What is the LED?

The LED is the abbreviation of light emitting diode. It is usually made of
gallium arsenide, gallium phosphide semiconductor materials. The LED has
two electrodes, a positive electrode and a negative electrode, it will light only
when a forward current passes, and it can be red, blue, green or yellow light,
etc. The color of light depends on the materials it was made.

In general, the drive current for LED is 5-20mA. Therefore, in reality it usually
needs an extra resistor for current limitation so as to protect the LED.
2. What is the resistor?

The main function of the resistor is to limit current. In the circuit, the character
‘R’ represents resistor, and the unit of resistor is ohm(Ω).

The band resistor is used in this experiment. A band resistor is one whose
surface is coated with some particular color through which the resistance can
be identified directly.

 www.adeept.com

- 3 -

There are two methods for connecting LED to Arduino’s GPIO:

①

As shown in the schematic diagram above, the anode of LED is connected to
Arduino’s GPIO via a resistor, and the cathode of LED is connected to the
ground(GND). When the GPIO output high level, the LED is on; when the GPIO
output low level, the LED is off.

The size of the current-limiting resistor is calculated as follows: 5~20mA
current is required to make an LED on, and the out put voltage of the Arduino
UNO’s GPIO is 5V, so we can get the resistance：

R = U / I = 5V / (5~20mA) = 250Ω~1KΩ

Since the LED has a certain resistance, thus we choose a 220ohm resistor.

②

As shown in the schematic diagram above, the anode of LED is connected to
VCC(+5V), and the cathode of LED is connected to the Arduino’s GPIO. When
the GPIO output low level, the LED is on; when the GPIO output high level, the
LED is off.

The experiment is based on method ①, we select Arduino's D8 pin to control
the LED. When the Arduino’s D8 pin is programmed to output high level, then

 www.adeept.com

- 4 -

the LED will be on, next delay for the amount of time, and then programmed
the D8 pin to low level to make the LED off. Continue to perform the above
process, you can get a blinking LED.

3. Key functions:

● setup()

The setup() function is called when a sketch starts. Use it to initialize variables,
pin modes, start using libraries, etc. The setup function will only run once,
after each powerup or reset of the Arduino board.

●loop()

After creating a setup() function, which initializes and sets the initial values,
the loop() function does precisely what its name suggests, and loops
consecutively, allowing your program to change and respond. Use it to actively
control the Arduino board.

●pinMode()

Configures the specified pin to behave either as an input or an output.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with
the mode INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the
internal pullups.

●digitalWrite()

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(), its voltage will be
set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V
(ground) for LOW.

If the pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable
(LOW) the internal pullup on the input pin. It is recommended to set the
pinMode() to INPUT_PULLUP to enable the internal pull-up resistor.

●delay()

Pauses the program for the amount of time (in miliseconds) specified as
parameter. (There are 1000 milliseconds in a second.)

 www.adeept.com

- 5 -

Procedures

1. Build the circuit

2. Program
/***

File name: 01_blinkingLed.ino

Description: Lit LED, let LED blinks.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date:2018/01/01

***/

int ledPin=8; //definition digital 8 pins as pin to control the LED

void setup()

{

 pinMode(ledPin,OUTPUT); //Set the digital 8 port mode, OUTPUT:

Output mode

}

void loop()

{

 digitalWrite(ledPin,HIGH); //HIGH is set to about 5V PIN8

 delay(1000); //Set the delay time, 1000 = 1S

 digitalWrite(ledPin,LOW); //LOW is set to about 5V PIN8

 delay(1000); //Set the delay time, 1000 = 1S

}

 www.adeept.com

- 6 -

3. Compile the program and upload to Arduino UNO board
Now, you can see the LED is blinking.

 www.adeept.com

- 7 -

Lesson 2 Controlling an LED with a button
Overview

In this lesson, we will learn how to detect the state of a button, and then toggle
the state of LED based on the state of the button.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* Button
- 1* LED
- 1* 10KΩ Resistor
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper wires

Principle

1. Button

Buttons are a common component used to control electronic devices. They are
usually used as switches to connect or disconnect circuits. Although buttons
come in a variety of sizes and shapes, the one used in this experiment will be
a 12mm button as shown in the following pictures. Pins pointed out by the
arrows of same color are meant to be connected.

 www.adeept.com

- 8 -

The button we used is a normally open type button. The two contacts of a
button is in the off state under the normal conditions, only when the button is
pressed they are closed.

The schematic diagram we used is as follows:

The button jitter must be happen in the process of using. The jitter waveform
is as the flowing picture:

Each time you press the button, the Arduino will think you have pressed the
button many times due to the jitter of the button.We must to deal with the
jitter of buttons before we use the button. We can through the software
programming method to remove the jitter of buttons, and you can use a
capacitance to remove the jitter of buttons. We introduce the software method.
First, we detect whether the level of button interface is low level or high
level.When the level we detected is low level, 5~10 MS delay is needed, and
then detect whether the level of button interface is low or high. If the signal is
low, we can confirm that the button is pressed once. You can also use a 0.1 uF
capacitance to clean up the jitter of buttons. The schematic diagram is shown
in below:

 www.adeept.com

- 9 -

2. interrupt

Hardware interrupts were introduced as a way to reduce wasting the
processor's valuable time in polling loops, waiting for external events. They
may be implemented in hardware as a distinct system with control lines, or
they may be integrated into the memory subsystem.

3. Key functions:

●attachInterrupt(interrupt, ISR, mode)

Specifies a named Interrupt Service Routine (ISR) to call when an interrupt
occurs. Replaces any previous function that was attached to the interrupt.
Most Arduino boards have two external interrupts: numbers 0 (on digital pin 2)
and 1 (on digital pin 3).

Generally, an ISR should be as short and fast as possible. If your sketch uses
multiple ISRs, only one can run at a time, other interrupts will be ignored
(turned off) until the current one is finished. as delay() and millis() both rely on
interrupts, they will not work while an ISR is running. delayMicroseconds(),
which does not rely on interrupts, will work as expected.

Syntax
attachInterrupt(pin, ISR, mode)

Parameters
pin: the pin number
ISR: the ISR will be called when the interrupt occurs; this function must take
no parameters and return nothing. This function is sometimes referred to as
an interrupt service routine.
mode: defines when the interrupt should be triggered. Four contstants are
predefined as valid values:

-LOW to trigger the interrupt whenever the pin is low,
-CHANGE to trigger the interrupt whenever the pin changes value
-RISING to trigger when the pin goes from low to high,

 www.adeept.com

- 10 -

-FALLING for when the pin goes from high to low.
●digitalRead()

Reads the value from a specified digital pin, either HIGH or LOW.
Syntax
digitalRead(pin)
Parameters
pin: the number of the digital pin you want to read (int)
Returns
HIGH or LOW
●delayMicroseconds(us)

Pauses the program for the amount of time (in microseconds) specified as
parameter. There are a thousand microseconds in a millisecond, and a million
microseconds in a second.

Currently, the largest value that will produce an accurate delay is 16383. This
could change in future Arduino releases. For delays longer than a few thousand
microseconds, you should use delay() instead.

Syntax
delayMicroseconds(us)
Parameters
us: the number of microseconds to pause (unsigned int)
Returns
None

 www.adeept.com

- 11 -

Procedures

1. Build the circuit

2.Program

Code position： AdeeptUltimateSensorKitForUNOR3\02_btnAndLed1
AdeeptUltimateSensorKitForUNOR3\02_btnAndLed2

02_btnAndLed1：by detecting the button ports and level changes circularly to control the light
02_btnAndLed2： by breaking off to detect the button ports and level changes to control the light

3. Compile the program and upload to Arduino UNO board
When you press the button, you can see the state of the LED will be toggled.
(ON->OFF，OFF->ON).

 www.adeept.com

- 12 -

Summary

Through this lesson, you should have learned how to use the Arduino UNO

detects an external button state, and then toggle the state of LED relying on

the state of the

 www.adeept.com

- 13 -

Lesson 3 LED Flowing Lights
In the first class, we have learned how to make an LED blink by programming
the Arduino. Today, we will use the Arduino to control 8 LEDs, so that 8 LEDs
showing the result of flowing.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 8* LED
- 8* 220Ω Resistor
- 1* Breadboard
- Several Jumper wires

Principle

The principle of this experiment is very simple. It is very similar with the first
class.

Key function:

●for statements

The for statement is used to repeat a block of statements enclosed in curly
braces. An increment counter is usually used to increment and terminate the
loop. The for statement is useful for any repetitive operation, and is often used
in combination with arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);
}

 www.adeept.com

- 14 -

The initialization happens first and exactly once. Each time through the loop,
the condition is tested; if it's true, the statement block, and the increment is
executed, then the condition is tested again. When the condition becomes
false, the loop ends.

Procedures

1. Build the circuit

 www.adeept.com

- 15 -

2. Program

/***

File name: 03_flowingLed.ino

Description: LED turn lighting control

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/
void setup()

{

 unsigned char ledPin; //ledPin will be set to 1,2,3,4,5,6, 7 and 8.

 for(ledPin=1;ledPin<=8;ledPin++)//In turn set 1 ~ 8 digital pins to output mode

 pinMode(ledPin,OUTPUT); //Set the ledPin pin to output mode

}

void loop()

{

 unsigned char ledPin; //ledPin will be set to 1,2,3,4,5,6, 7 and 8.

 for(ledPin=1;ledPin<=8;ledPin++)//Every 200ms on in order LED1 ~ 8

 {

 digitalWrite(ledPin,HIGH); //led on

 delay(200); //Delay 200 ms

 }

 for(ledPin=1;ledPin<=8;ledPin++)//Every 200ms off in order LED1 ~ 8

 {

 digitalWrite(ledPin,LOW); //led off

 delay(200); //Delay 200 ms

 }

}
3. Compile the program and upload to Arduino UNO board
Now, you should see 8 LEDs are lit in sequence from the right green one to the

left, next from the left to the right one. And then repeat the above
phenomenon.

 www.adeept.com

- 16 -

Summary

Through this simple and fun experiment, we have learned more skilled
programming about the Arduino. In addition, you can also modify the circuit
and code we provided to achieve even more dazzling effect.

 www.adeept.com

- 17 -

Lesson 4 Breathing LED
Overview

In this lesson, we will learn how to program the Arduino to generate PWM
signal. And use the PWM square-wave signal control an LED gradually
becomes brighter and then gradually becomes dark like the animal’s
breathing.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results with
digital means. Digital control is used to create a square wave, a signal switched
between on and off. This on-off pattern can simulate voltages in between full
on (5 Volts) and off (0 Volts) by changing the portion of the time the signal
spends on versus the time that the signal spends off. The duration of "on time"
is called the pulse width. To get varying analog values, you change, or
modulate, that pulse width. If you repeat this on-off pattern fast enough with
an LED for example, the result is as if the signal is a steady voltage between 0
and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This
duration or period is the inverse of the PWM frequency. In other words, with
Arduino's PWM frequency at about 500Hz, the green lines would measure 2
milliseconds each. A call to analogWrite() is on a scale of 0 - 255, such that
analogWrite(255) requests a 100% duty cycle (always on), and
analogWrite(127) is a 50% duty cycle (on half the time) for example.

 www.adeept.com

- 18 -

Key function:

●analogWrite()

Writes an analog value (PWM wave) to a pin. Can be used to light an LED at
varying brightnesses or drive a motor at various speeds. After a call to
analogWrite(), the pin will generate a steady square wave of the specified duty
cycle until the next call to analogWrite() (or a call to digitalRead() or
digitalWrite() on the same pin). You do not need to call pinMode() to set the
pin as an output before calling analogWrite().

Syntax
analogWrite(pin, value)
Parameters
pin: the pin to write to.
value: the duty cycle: between 0 (always off) and 255 (always on).
Returns
nothing

 www.adeept.com

- 19 -

Procedures

1. Build the circuit

2. Program
/***

File name: 04_breathingLed.ino

Description: PWM control the LED gradually from dark to

 brighter, then from brighter to dark

Website: www.adeept.com

E-mail: support@adeept.com

Author:Ryan

Date: 2018/01/01

***/

int ledpin=11; //definition digital 11 pins as pin to control the LED

void setup ()

{

 pinMode(ledpin,OUTPUT); //Set digital 11 port mode, the OUTPUT for the output

}

void loop()

{

 www.adeept.com

- 20 -

 for (int a=0; a<=255;a++) //Loop, PWM control of LED brightness increase

 {

 analogWrite(ledpin,a); //PWM output value a (0~255)

 delay(15); //The duration of the current brightness level. 15ms

 }

 for (int a=255; a>=0;a--) //Loop, PWM control of LED brightness Reduced

 {

 analogWrite(ledpin,a); //PWM output value a (255~0)

 delay(15); //The duration of the current brightness level. 15ms

 }

 delay(100); //100ms delay

}
3. Compile the program and upload to Arduino UNO board.
Now, you should see the LED gradually from dark to brighter, and then from
brighter to dark, continuing to repeat the process, its rhythm like the animal's
breathing.

Summary

By learning this lesson, I believe that you have understood the basic principles
of the PWM, and mastered the PWM programming on the Arduino platform.

 www.adeept.com

- 21 -

Lesson 5 Control LED Brightness by

Potentiometer
Overview

In this lesson, we'll learn how to control an LED by potentiometer.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* 220Ω Resistor
- 1* LED
- 1* potentiometer
- 1* Breadboard
- 5* Jumper Wires

Principle

In this experiment, a B10k potentiometer is used to control LED brightness by
PWM signals.

1. What is a potentiometer?

Potentiometer is a resistor element with 3 terminals whose resistance can be
changed based on certain rules. It is usually composed of a resistive element
and a moveable electric brush. When the brush moves along the element, at
the terminal a resistance or voltage is generated relative to the distance it
moved.

2. key funcation
●setup()

The setup() function is called when a sketch starts. Use it to initialize variables,
pin modes, start using libraries, etc. The setup function will only run once,
after each powerup or reset of the Arduino board.

http://wiki.geek-workshop.com/doku.php?id=arduino:arduino_language_reference:setup

 www.adeept.com

- 22 -

●loop()
After creating a setup() function, which initializes and sets the initial values,
the loop() function does precisely what its name suggests, and loops
consecutively, allowing your program to change and respond. Use it to actively
control the Arduino board.
●pinMode()

Configures the specified pin to behave either as an input or an output.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with
the mode INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the
internal pullups.

Procedures

1. Build the circuit

http://wiki.geek-workshop.com/doku.php?id=arduino:arduino_language_reference:loop
http://wiki.geek-workshop.com/doku.php?id=arduino:arduino_language_reference:pinmode

 www.adeept.com

- 23 -

2.Program
/***

File name: 05_potentiometer.ino

Description:The rotating potentiometer can see the brightness of the LED changing.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/

void setup()

{

 pinMode(11,OUTPUT); //Set PWM outlet 11

}

void loop()

{

 int n = analogRead(A0); //Read the value of the A0 simulation port (0-5v

corresponding to 0-1204 value)

 analogWrite(11,n/4); //The maximum value of PWM is 255, so the value of the

simulated port is divided by 4.

}

3. Compile the program and upload to Arduino UNO board
Now, you turn the potentiometer and you can see the change in the brightness of the
LED.

 www.adeept.com

- 24 -

Summary

After this lesson, you should have learnt using a Potentiometer to change the
illuminance of an LED light. Later on you can use it to control more devices
similarly.

 www.adeept.com

- 25 -

Lesson 6 Active Buzzer
Overview

In this lesson, we will learn how to program the Arduino to make an active
buzzer sound.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* Active buzzer
- 1* 1 kΩ Resistor
- 1* NPN Transistor (S8050)
- 1* Breadboard
- Several Jumper Wires

Principle

A buzzer or beeper is an audio signaling device. As a type of electronic buzzer
with integrated structure, which use DC power supply, are widely used in
computers, printers, photocopiers, alarms, electronic toys, automotive
electronic equipments, telephones, timers and other electronic products for
voice devices. Buzzers can be categorized as active and passive buzzers (See
the following pictures).

 Active buzzer Passive buzzer

When you place the pins of buzzers upward, you can see that two buzzers are
different, the buzzer that green circuit board exposed is the passive buzzer.

 www.adeept.com

- 26 -

In this study, the buzzer we used is active buzzer. Active buzzer will sound as
long as the power supply. We can program to make the Arduino output
alternating high and low level, so that the buzzer sounds.

A slightly larger current is needed to make a buzzer sound. However, the
output current of Arduino’s GPIO is weak, so we need a transistor to drive the
buzzer.

The main function of transistor is blowing up the voltage or current. The
transistor can also be used to control the circuit conduction or deadline. And
the transistor is divided into two kinds, one kind is NPN, for instance, the
S8050 we provided; another kind is PNP transistor such as the S8550 we
provided. The transistor we used is as shown in below:

There are two driving circuit for the buzzer:

 Figure1 Figure2

 www.adeept.com

- 27 -

Figure 1: Set the Arduino GPIO as a high level, the transistor S8050 will
conduct, and then the buzzer will sound; set the Arduino GPIO as low level, the
transistor S8050 will cut off, then the buzzer will stop.

Figure 2: Set the Arduino GPIO as low level, the transistor S8550 will conduct,
and the buzzer will sound; set the Arduino GPIO as a high level, the transistor
S8550 will cut off, then the buzzer will stop.

Procedures

1. Build the circuit

2. Program

 www.adeept.com

- 28 -

/***

File name: 06_activeBuzzer.ino

Description: Arduino uno Continuous beeps control buzzer.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/

int buzzerPin=8; //definition digital 8 pins as pin to control the buzzer

void setup()

{

 pinMode(buzzerPin,OUTPUT); //Set digital 8 port mode, the OUTPUT for the output

}

void loop()

{

 digitalWrite(buzzerPin,HIGH); //Set PIN 8 feet as HIGH = 5 v

 delay(2000); //Set the delay time，2000ms

 digitalWrite(buzzerPin,LOW); //Set PIN 8 feet for LOW = 0 v

 delay(2000); //Set the delay time，2000ms

}

3. Compile the program and upload to Arduino UNO board

Now, you should be able to hear the sound of the buzzer.

 www.adeept.com

- 29 -

Summary

By learning this lesson, we have mastered the basic principle of the buzzer and
the transistor. We also learned how to program the Arduino and then control
the buzzer. I hope you can use what you have learned in this lesson to do some
interesting things.

 www.adeept.com

- 30 -

Lesson 7 Controlling Relay
Overview

In this lesson, we will learn how to control a relay to cut off or connect a circuit.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* Relay module
- 1* LED
- 1* Breadboard
- Several Jumper Wires

Principle

A relay is an electrically operated switch. It is generally used in automatic
control circuit. Actually, it is an "automatic switch" which uses low current to
control high current. It plays a role of automatic regulation, security protection
and circuit switch. When an electric current is passed through the coil it
generates a magnetic field that activates the armature, and the consequent
movement of the movable contact(s) either makes or breaks (depending upon
construction) a connection with a fixed contact. If the set of contacts was
closed when the relay was de-energized, then the movement opens the
contacts and breaks the connection, and vice versa if the contacts were open.
When the current to the coil is switched off, the armature is returned by a force,
approximately half as strong as the magnetic force, to its relaxed position.
Usually this force is provided by a spring, but gravity is also used commonly in
industrial motor starters. Most relays are manufactured to operate quickly. In
a low-voltage application this reduces noise; in a high voltage or current
application it reduces arcing.

When the coil is energized with direct current, a diode is often placed across
the coil to dissipate the energy from the collapsing magnetic field at
deactivation, which would otherwise generate a voltage spike dangerous to
semiconductor circuit components.

 www.adeept.com

- 31 -

Procedures

1. Build the circuit

2.Program
/***

File name: 07_relay.ino

Description:When the relay sucks, the LED will light up; when

 the relay breaks, the LED will go out.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/

const int relayPin = 8; //the base of the transistor attach to

void setup()

{

 pinMode(relayPin, OUTPUT); //initialize the relayPin as an output

}

 www.adeept.com

- 32 -

void loop()

{

 digitalWrite(relayPin, HIGH); //drive relay closure conduction

 delay(1000); //wait for a second

 digitalWrite(relayPin, LOW); //drive the relay is closed off

 delay(1000); //wait for a second

}

3. Compile the program and upload to Arduino UNO board
When the set of contacts was closed, the LED will be lit up; when the set of
contacts was broke, the LED will go out.

 www.adeept.com

- 33 -

Summary

By learning this lesson, you have already known the basic principle of the relay,
and you can also use the relay to do some creative applications.

 www.adeept.com

- 34 -

Lesson 8 Controlling a RGB LED by PWM
Overview

In this lesson, we will program the Arduino for RGB LED control, and make
RGB LED emits a various of colors of light.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* RGB LED
- 3* 220Ω Resistor
- 1* Breadboard
- Several Jumper wires

Principle

RGB LEDs consist of three LEDs. Each LED actually has one red, one green and
one blue light. These three colored LEDs are capable of producing any color.
Tri-color LEDs with red, green, and blue emitters, in general using a four-wire
connection with one common lead (anode or cathode). These LEDs can have
either common anode or common cathode leads.

What we used in this experiment is the common anode RGB LED. The longest
pin is the common anode of three LEDs. The pin is connected to the +5V pin of
the Arduino, and the three remaining pins are connected to the Arduino’s D9,
D10, D11 pins through a current limiting resistor.

In this way, we can control the color of RGB LED by 3-channel PWM signal.

 www.adeept.com

- 35 -

Procedures

1. Bild the circuit

 www.adeept.com

- 36 -

2. Program
/***

File name: 08_rgbLed.ino

Description:Control the RGB LED emitting red, green, blue, yellow,

 white and purple light, then the RGB LED will be off,

 each state continues 1s, after repeating the above

 procedure.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/

int redPin = 11; // R petal on RGB LED module connected to digital pin 11

int greenPin = 10; // G petal on RGB LED module connected to digital pin 10

int bluePin = 9; // B petal on RGB LED module connected to digital pin 9

void setup()

{

 pinMode(redPin, OUTPUT); // sets the redPin to be an output

 pinMode(greenPin, OUTPUT); // sets the greenPin to be an output

 pinMode(bluePin, OUTPUT); // sets the bluePin to be an output

}

void loop() // run over and over again

{

 // Basic colors:

 color(255, 0, 0); // turn the RGB LED red

 delay(1000); // delay for 1 second

 color(0,255, 0); // turn the RGB LED green

 delay(1000); // delay for 1 second

 color(0, 0, 255); // turn the RGB LED blue

 delay(1000); // delay for 1 second

 // Example blended colors:

 color(255,255,0); // turn the RGB LED yellow

 delay(1000); // delay for 1 second

 color(255,255,255); // turn the RGB LED white

 delay(1000); // delay for 1 second

 color(128,0,255); // turn the RGB LED purple

 delay(1000); // delay for 1 second

 color(0,0,0); // turn the RGB LED off

 delay(1000); // delay for 1 second

}

 www.adeept.com

- 37 -

void color (unsigned char red, unsigned char green, unsigned char blue)// the color

generating function

{

 analogWrite(redPin, 255-red); // PWM signal output

 analogWrite(greenPin, 255-green); // PWM signal output

 analogWrite(bluePin, 255-blue); // PWM signal output

}

3. Compile the program and upload to Arduino UNO board
Now, you can see the RGB LED emitting red, green, blue, yellow, white and
purple light, then the RGB LED will be off, each state continues 1s, after
repeating the above procedure.

Summary

By learning this lesson, I believe you have already known the principle and the
programming of RGB LED. I hope you can use your imagination to achieve
even more cool ideas based on this lesson.

 www.adeept.com

- 38 -

Lesson 9 Tilt Switch
Overview

In this lesson, we will learn how to use the tilt switch and change the state of
an LED by changing the angle of tilt switch.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* Tilt Switch
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

The tilt switch is also called the ball switch. When the switch is tilted in the
appropriate direction, the contacts will be connected, tilting the switch the
opposite direction causes the metallic ball to move away from that set of
contacts, thus breaking that circuit.

Procedures

1. Build the circuit

 www.adeept.com

- 39 -

2. Program
/***

File name: 09_tiltSwitch.ino

Description: Tilt switches to control the LED light on or off

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/

int ledpin=11; //definition digital 11 pins as pin to control the

//LED

int tiltSwitchpin=7; //Set the digital 7 to tilt switch interface

int val; //Define variable val

void setup()

{

 pinMode(ledpin,OUTPUT); //Define small lights interface for the

//output interface

 pinMode(tiltSwitchpin,INPUT_PULLUP);//define the tilt switch

//interface for input interface

}

void loop()

{

 val=digitalRead(tiltSwitchpin);//Read the number seven level value is

//assigned to val

 if(val==LOW) //Detect tilt switch is disconnected, the

//tilt switch when small lights go out

 { digitalWrite(ledpin,LOW);} //Output low, LED OFF

 else //Detection of tilt switch is conduction,

//tilt the little lights up when the switch conduction

 { digitalWrite(ledpin,HIGH);} //Output high, LED ON

}

3. Compile the program and upload to Arduino UNO board
Now, when you lean the breadboard at a certain angle, you will see the state of
LED is changed.

 www.adeept.com

- 40 -

Summary

In this lesson, we have learned the principle and application of the tilt switch.
Tilt switch is a very simple electronic component, but simple device can often
make something interesting.

 www.adeept.com

- 41 -

Lesson 10 Rotary encoder
Overview

In this lesson, let's check how to use a rotary encoder.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* Rotary encoders
- 1* 5pin jumper wires
- Several Jumper wires

Principle

Rotary Encoder

Rotary encoder, or shaft encoder, is an electromechanical device that converts
the rotation position or travel distance into analog or digital signals. It's usually
placed on the face of the vertical rotary shaft in a rotational object. Based on
its functions, it can be widely used in situations that need accurate rotary
position and speed, such as industrial control, robotics technology, special
camera, computer inputs like mouse and trackball, etc.

Rotary encoders can be divided into absolute and incremental types. The
incremental encoder, or relative encoder, calculates the speed of revolution
and position by detecting the pulse; it outputs data of movement of the rotary
shaft, which will be converted into speed of revolution, distance, revolution per
minute (RPM), or position by other devices or circuits. On the other hand, the
absolute encoder will output the position of the rotary shaft, thus can be
regarded as an angle sensor.

In this experiment, an incremental encoder is applied. Spin the encoder shaft
clockwise or counterclockwise, or press it down and you can see the
corresponding value in the window on the computer.

 www.adeept.com

- 42 -

Procedures

1. Build the circuit

3. Program

/***

File name: 10_RotaryEncoderModule.ino

Description: The information of rotary encoder module has been

 detected by UNO R3,and displayed in the serial monitor

 When the rotary encoder turns clockwise, the angular

 displacement is increased;when it turns counterclockwise,

 it’s decreased.If you press the switch on the rotary

 encoder, related readings will return to zero

Website: www.adeept.com

E-mail: support@adeept.com

Author: Ryan

Date: 2018/01/01

***/

const int APin= 2; //Set the digital 2 to A pin

const int BPin= 3; //Set the digital 3 to B pin

const int SPin= 4 ;//Set the digital 4 to S pin

int encoderVal = 0;

 www.adeept.com

- 43 -

void setup()

{

 pinMode(APin, INPUT);//initialize the A pin as input

 pinMode(BPin, INPUT);//initialize the B pin as input

 pinMode(SPin, INPUT);//initialize the S pin as input

 Serial.begin(9600); //opens serial port, sets data rate to 9600 bps

}

void loop()

{

 int change = getRotaryEncoder();

 encoderVal = encoderVal - change;

 if(digitalRead(SPin) == LOW)

 {

 encoderVal = 0;

 }

 Serial.println(encoderVal);

}

int getRotaryEncoder(void)

{

 static int oldA = HIGH; //set the oldA as HIGH

 static int oldB = HIGH; //set the oldB as HIGH

 int result = 0;

 int newA = digitalRead(APin); //read the value of APin to newA

 int newB = digitalRead(BPin); //read the value of BPin to newB

 if (newA != oldA || newB != oldB)//if the value of APin or the BPin has changed

 {

 if (oldA == HIGH && newA == LOW)// something has changed

 {

 result = (oldB * 2 - 1);

 }

 }

 oldA = newA;

 oldB = newB;

 return result;

}

 www.adeept.com

- 44 -

3. Compile the program and upload to Arduino UNO board

when you rotate the rotary encoder clockwise or anticlockwise, or you press
down it, you can see the corresponding value on the window

 www.adeept.com

- 45 -

Summary

Through the lesson, you may have mastered the working principle of the
rotary encoder. In the future you can use it to make more interesting
experiments.

 www.adeept.com

- 46 -

Lesson 11 LCD1602
Overview

In this lesson, we will learn how to use a character display device—LCD1602
on the Arduino platform. First, we make the LCD1602 display a string "Hello
Geeks!" scrolling，then display“Adeept”and“www.adeept.com”static.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* LCD1602
- 1* 10KΩ Potentiometer
- 1* Breadboard
- Several Jumper wires

Principle

LCD1602 is a kind of character LCD display. The LCD has a parallel interface,
meaning that the microcontroller has to manipulate several interface pins at
once to control the display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're
writing data to. You can select either the data register, which holds what goes
on the screen, or an instruction register, which is where the LCD's controller
looks for instructions on what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The state of these pins (high or low) are the bits that
you're writing to a register when you write, or the values when you read.

● There's also a display contrast pin (Vo), power supply pins (+5V and Gnd)
and LED Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD,
control the display contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the
image of what you want to display into the data registers, then putting
instructions in the instruction register. The LiquidCrystal Library simplifies this

http://www.adeept.com/
query:potentiometer

 www.adeept.com

- 47 -

for you so you don't need to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit.
The 4-bit mode requires seven I/O pins from the Arduino, while the 8-bit mode
requires 11 pins. For displaying text on the screen, you can do most everything
in 4-bit mode, so example shows how to control a 2x16 LCD in 4-bit mode.

A potentiometer , informally a pot, is a three-terminal resistor with a sliding or
rotating contact that forms an adjustable voltage divider. If only two terminals
are used, one end and the wiper, it acts as a variable resistor or rheostat.

Key function:

●begin()
Specifies the dimensions (width and height) of the display.
Syntax
lcd.begin(cols, rows)
Parameters
lcd: a variable of type LiquidCrystal
cols: the number of columns that the display has
rows: the number of rows that the display has

●setCursor()
Position the LCD cursor; that is, set the location at which subsequent text
written to the LCD will be displayed.
Syntax
lcd.setCursor(col, row)
Parameters
lcd: a variable of type LiquidCrystal
col: the column at which to position the cursor (with 0 being the first column)
row: the row at which to position the cursor (with 0 being the first row)

●scrollDisplayLeft()
Scrolls the contents of the display (text and cursor) one space to the left.
Syntax
lcd.scrollDisplayLeft()
Parameters
lcd: a variable of type LiquidCrystal

 www.adeept.com

- 48 -

Example
scrollDisplayLeft() and scrollDisplayRight()
See also
scrollDisplayRight()

●print()
Prints text to the LCD.
Syntax
lcd.print(data)
lcd.print(data, BASE)
Parameters
lcd: a variable of type LiquidCrystal
data: the data to print (char, byte, int, long, or string)
BASE (optional): the base in which to print numbers: BIN for binary (base 2),
DEC for decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base
16).
Returns
byte
print() will return the number of bytes written, though reading that number is
optional

●clear()
Clears the LCD screen and positions the cursor in the upper-left corner.
Syntax
lcd.clear()
Parameters
lcd: a variable of type LiquidCrystal

 www.adeept.com

- 49 -

Procedures

1. Build the circuit

3.Program

4. Compile the program and upload to Arduino UNO board
Now, you can see the string "Hello Geeks!" is shown on the LCD1602 scrolling,
and then the string "Adeept" and "www.adeept.com" is displayed on the
LCD1602 static.

http://www.adeept.com/

 www.adeept.com

- 50 -

Summary

I believe that you have already mastered the driver of LCD1602 through this
lesson. I hope you can make something more interesting base on this lesson
and the previous lesson learned.

 www.adeept.com

- 51 -

Lesson 12 Photoresistor
Overview

In this lesson, we will learn how to measure the light intensity by photoresistor
and make the measurement result displayed on the LCD1602.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* LCD1602
- 1* Photoresistor
- 1* 10KΩ Resistor
- 1* 10KΩ Potentiometer
- 1* Breadboard
- Several Jumper wires

Principle

A photoresistor is a light-controlled variable resistor. The resistance of a
photoresistor decreases with the increasing incident light intensity; in other
words, it exhibits photoconductivity. A photoresistor can be applied in
light-sensitive detector circuits.

A photoresistor is made of a high resistance semiconductor. In the dark, a
photoresistor can have a resistance as high as a few megohms (MΩ), while in
the light, a photoresistor can have a resistance as low as a few hundred ohms.
If incident light on a photoresistor exceeds a certain frequency, photons
absorbed by the semiconductor give bound electrons enough energy to jump
into the conduction band. The resulting free electrons (and their hole partners)
conduct electricity, thereby lowering resistance. The resistance range and
sensitivity of a photoresistor can substantially differ among dissimilar devices.
Moreover, unique photoresistors may react substantially differently to photons
within certain wavelength bands.

The schematic diagram of this experiment is shown below:

query:potentiometer

 www.adeept.com

- 52 -

With the increase of the light intensity, the resistance of photoresistor will be
decreased. The voltage of GPIO port in the above figure will become high.

Procedures

1. Build the circuit

 www.adeept.com

- 53 -

2.Program

3. Compile the program and upload to Arduino UNO board
Now, when you try to block the light towards the photoresistor, you will find
that the value displayed on the LCD1602 will be reduced. Otherwise, when you
use a powerful light to irradiate the photoresistor, the value displayed on the
LCD1602 will be increased.

Summary

By learning this lesson, we have learned how to detect surrounding light
intensity with the photoresistor. You can play your own wisdom, and make
more originality based on this experiment and the former experiment.

 www.adeept.com

- 54 -

Lesson 13 Using a thermistor to measure
the temperature

Overview

In this lesson, we will learn how to use a thermistor to collect temperature by
programming Arduino. The information which a thermistor collects
temperature is displayed on the LCD1602.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* LCD1602
- 1* 10KΩ Resistor
- 1* Thermistor sensor
- 1* Breadboard
- Several Jumper Wires

Principle

A thermistor is a type of resistor whose resistance varies significantly with
temperature, more so than in standard resistors. We are using MF52 NTC
thermistor type. BTC thermistor is usually used as a temperature sensor.

MF52 thermistor key parameters:

B-parameter：3470.

25℃ resistor：10KΩ.

 www.adeept.com

- 55 -

The relationship between the resistance of thermistor and temperature is as
follows:

𝑹𝑹𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑹𝑹 ∗ 𝒕𝒕
�𝑩𝑩∗� 𝟏𝟏𝑻𝑻𝟏𝟏

− 𝟏𝟏
𝑻𝑻𝟐𝟐
��

𝑹𝑹𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 : the resistance of thermistor at temperature T1

𝐑𝐑 : The nominal resistance of thermistor at room temperature T2;

𝐞 : 2.718281828459；

𝐁 : It is one of the important parameters of thermistor;

𝑻𝑻𝟏𝟏 : the Kelvin temperature that you want to measure.

𝑻𝑻𝟐𝟐 : At the condition of room temperature 25 ℃ (298.15K), the standard
resistance of MF52 thermistor is 10K;

Kelvin temperature = 273.15 (absolute temperature) + degrees Celsius;

After transforming the above equation, we can get to the following formula:

𝑻𝑻𝟏𝟏 =
𝑩𝑩

�𝒍𝒏�
𝑹𝑹𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝑹𝑹 � + 𝑩𝑩
𝑻𝑻𝟐𝟐
�

 www.adeept.com

- 56 -

Procedures

1. Build the circuit

2. Program

3. Compile the program and upload to Arduino UNO board
Now, you can see the temperature which is collected by thermistor on the
LCD1602.

 www.adeept.com

- 57 -

Summary

By learning this lesson, I believe you have learned to use a thermistor to
measure temperature. Next, you can use a thermistor to produce some
interesting applications.

 www.adeept.com

- 58 -

Lesson 14 temperature alarm
Overview

In this lesson, we'll try how to make a temperature alarm.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* temperature sensor
- 1* buzzer
- 1* Breadboard
- 1* 10kΩResistor
- Several Jumper Wires

Procedures

1. Build the circuit

 www.adeept.com

- 59 -

2. Program

3. Compile the program and upload to Arduino UNO board
Now, you may not hear the buzzer beep, since the temperature has not
reached 27℃. When it does, the buzzer will beep.

Summary

 In this lesson, we learnt the principle and application of the temperature
sensor. Surely you can also make other fascinating experiments apart from
this alarm, like an ambient temperature detector or others.

 www.adeept.com

- 60 -

Lesson 15 7-segment display
Overview

In this lesson, we will program the Arduino to achieve the controlling of
segment display.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* 220Ω Resistor
- 1* 7-Segment display
- 1* Breadboard
- Several Jumper wires

Principle

The seven-segment display is a form of electronic display device for displaying
decimal numerals that is an alternative to the more complex dot
matrix displays.

Seven-segment displays are widely used in digital clocks, electronic meters,
basic calculators, and other electronic devices that display numerical
information.

The seven-segment display is an 8-shaped LED display device composed of
eight LEDs (including a decimal point), these segments respectively named a,
b, c, d, e, f, g, dp.

The segment display can be divided into common anode and common cathode
segment display by internal connections.

 www.adeept.com

- 61 -

When using a common anode LED, the common anode should to be connected
to the power supply (VCC); when using a common cathode LED, the common
cathode should be connected to the ground (GND).

Each segment of a segment display is composed of LED, so a resistor is needed
for protecting the LED.

A 7-segment display has seven segments for displaying a figure and a segment
for displaying a decimal point. If you want to display a number ‘1’, you should
only light the segment b and c.

 www.adeept.com

- 62 -

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino UNO board
Now, you should see the number 0~9 are displayed on the segment display.

 www.adeept.com

- 63 -

Summary

Through this lesson, we have learned the principle and programming of
segment display. I hope you can combine the former course to modify the code
we provided in this lesson to achieve cooler originality.

 www.adeept.com

- 64 -

Lesson 16 Serial Port
Overview

In this lesson, we will program the Arduino UNO to achieve function of send
and receive data through the serial port. The Arduino receiving data which
send from PC, and then controlling an LED according to the received data, then
return the state of LED to the PC's serial port monitor.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper wires

Principle

1. Serial ports

Used for communication between the Arduino board and a computer or other
devices. All Arduino boards have at least one serial port (also known as a UART
or USART). It communicates on digital pins 0 (RX) and 1 (TX) as well as with
the computer via USB. Thus, if you use these functions, you cannot also use
pins 0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate
with an Arduino board. Click the serial monitor button in the toolbar and select
the same baud rate used in the call to begin().

To use these pins to communicate with your personal computer, you will need
an additional USB-to-serial adaptor, as they are not connected to the UNO's
USB-to-serial adaptor. To use them to communicate with an external TTL serial
device, connect the TX pin to your device's RX pin, the RX to your device's TX
pin, and the ground of your UNO to your device's ground. (Don't connect these
pins directly to an RS232 serial port; they operate at +/- 12V and can damage
your Arduino board.)

 www.adeept.com

- 65 -

2. Key function

●begin()
Sets the data rate in bits per second (baud) for serial data transmission. For
communicating with the computer, use one of these rates: 300, 1200, 2400,
4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200. You can,
however, specify other rates - for example, to communicate over pins 0 and 1
with a component that requires a particular baud rate.

Syntax
Serial.begin(speed)
Parameters
speed: in bits per second (baud) - long
Returns
nothing

●print()
Prints data to the serial port as human-readable ASCII text. This command can
take many forms. Numbers are printed using an ASCII character for each digit.
Floats are similarly printed as ASCII digits, defaulting to two decimal places.
Bytes are sent as a single character. Characters and strings are sent as is. For
example:
Serial.print(78) gives “78”
Serial.print(1.23456) gives “1.23”
Serial.print('N') gives “N”
Serial.print(“Hello world.”) gives “Hello world.”
An optional second parameter specifies the base (format) to use; permitted
values are BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or
base 10), HEX (hexadecimal, or base 16). For floating point numbers, this
parameter specifies the number of decimal places to use. For example:
Serial.print(78, BIN) gives “1001110”
Serial.print(78, OCT) gives “116”
Serial.print(78, DEC) gives “78”
Serial.print(78, HEX) gives “4E”
Serial.println(1.23456, 0) gives “1”
Serial.println(1.23456, 2) gives “1.23”
Serial.println(1.23456, 4) gives “1.2346”
You can pass flash-memory based strings to Serial.print() by wrapping them

 www.adeept.com

- 66 -

with F(). For example :
Serial.print(F(“Hello World”))
To send a single byte, use Serial.write().
Syntax
Serial.print(val)
Serial.print(val, format)
Parameters
val: the value to print - any data type format: specifies the number base (for
integral data types) or number of decimal places (for floating point types)
Returns
byte print() will return the number of bytes written, though reading that
number is optional

●println()
Prints data to the serial port as human-readable ASCII text followed by a
carriage return character (ASCII 13, or '∖r') and a newline character (ASCII 10,
or '∖n'). This command takes the same forms as Serial.print().
Syntax
Serial.println(val)
Serial.println(val, format)
Parameters
val: the value to print - any data type
format: specifies the number base (for integral data types) or number of
decimal places (for floating point types)
Returns
byte
println() will return the number of bytes written, though reading that number
is optional

●read()
Reads incoming serial data. read() inherits from the Stream utility class.
Syntax
Serial.read()
Parameters
None
Returns
the first byte of incoming serial data available (or -1 if no data is available) - int

 www.adeept.com

- 67 -

Procedures

1. Build the circuit

4. Program

3. Compile the program and upload to Arduino UNO board
Open the port monitor, and then select the appropriate baud rate according to
the program.

Now, if you send a character‘1’or‘0’on the serial monitor, the state of LED will
be lit or gone out.

 www.adeept.com

- 68 -

 www.adeept.com

- 69 -

Summary

Through this lesson, you should have understood that the computer can send
data to Arduino UNO via the serial port, and then control the state of LED. I
hope you can use your head to make more interesting things based on this
lesson.

 www.adeept.com

- 70 -

Lesson 17 DC motor fan
Overview

In this comprehensive experiment, we will learn how to control the state of DC
motor with Arduino, and the state will be displayed through the LED at the
same time. The state of DC motor includes its forward, reverse, acceleration,
deceleration and stop.

Requirement

 - 1* Arduino UNO
 - 1* USB Cable
 - 1* DC motor module
 - 1* Breadboard
 - 1* The fan blade
 - Several Jumper wires

Principle
1. DC motor

A DC motor is any of a class of electrical machines that converts direct current
electrical power into mechanical power. The most common types rely on the
forces produced by magnetic fields. Nearly all types of DC motors have some
internal mechanism, either electromechanical or electronic, to periodically
change the direction of current flow in part of the motor. Most types produce
rotary motion; a linear motor directly produces force and motion in a straight
line.

 www.adeept.com

- 71 -

DC motors were the first type widely used, since they could be powered from
existing direct-current lighting power distribution systems. A DC motor's
speed can be controlled over a wide range, using either a variable supply
voltage or by changing the strength of current in its field windings. Small DC
motors are used in tools, toys, and appliances. The universal motor can
operate on direct current but is a lightweight motor used for portable power
tools and appliances.

 www.adeept.com

- 72 -

2. Key functions

●switch / case statements

Like if statements, switch…case controls the flow of programs by allowing
programmers to specify different code that should be executed in various
conditions. In particular, a switch statement compares the value of a variable
to the values specified in case statements. When a case statement is found
whose value matches that of the variable, the code in that case statement is
run.

The break keyword exits the switch statement, and is typically used at the end
of each case. Without a break statement, the switch statement will continue
executing the following expressions (“falling-through”) until a break, or the
end of the switch statement is reached.

Example

switch (var) {

 case 1:

 //do something when var equals 1

 break;

 case 2:

 //do something when var equals 2

 break;

 default:

 // if nothing else matches, do the default

 // default is optional

 }

Syntax

switch (var) {

 case label:

 // statements

 break;

 case label:

 // statements

 break;

 default:

 // statements

}

 www.adeept.com

- 73 -

Parameters

var: the variable whose value to compare to the various cases label: a value to
compare the variable to

Procedures

1. Build the circuit (Make sure that the circuit connection is correct and then
power, otherwise it may cause the chips to burn.)

3. Program

 www.adeept.com

- 74 -

3. Compile the program and upload to Arduino UNO board
Now we can see the motor turning

Summary

I think you must have grasped the basic theory and programming of the DC
motor after studying this experiment. You not only can forward and reverse it,
but also can regulate its speed. Besides, you can do some interesting
applications with the combination of this course and your prior knowledge.

www.adeept.com

- 75 -

Lesson 18 Controlling Servo motor

Overview

In this lesson, we will introduce a new electronic device (Servo) to you, and tell
you how to control it with the Arduino UNO.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* Servo
- Several Jumper Wires

Principle
1. Servo motor

The servo motor have three wires: power, ground, and signal. The power wire
is typically red, and should be connected to the 5V pin on the Arduino board.
The ground wire is typically black or brown and should be connected to a
ground pin on the Arduino board. The signal pin is typically yellow, orange or
white and should be connected to a digital pin on the Arduino board. Note the
servo motor draw considerable power, so if you need to drive more than one or
two, you'll probably need to power them from a separate supply (i.e. not the
+5V pin on your Arduino). Be sure to connect the grounds of the Arduino and
external power supply together.

2. Servo library

This library allows an Arduino board to control RC (hobby) servo motors.
Servos have integrated gears and a shaft that can be precisely controlled.
Standard servos allow the shaft to be positioned at various angles, usually
between 0 and 180 degrees. Continuous rotation servos allow the rotation of
the shaft to be set to various speeds.

3. Key functions:

●attach()

Attach the Servo variable to a pin. Note that in Arduino 0016 and earlier, the
Servo library supports only servos on only two pins: 9 and 10.

Syntax

www.adeept.com

- 76 -

servo.attach(pin)
servo.attach(pin, min, max)

Parameters

servo: a variable of type Servo

pin: the number of the pin that the servo is attached to

min (optional): the pulse width, in microseconds, corresponding to the
minimum (0-degree) angle on the servo (defaults to 544)

max (optional): the pulse width, in microseconds, corresponding to the
maximum (180-degree) angle on the servo (defaults to 2400)

Procedures

1. Build the circuit

www.adeept.com

- 77 -

2. Program

3. Compile the program and upload to Arduino UNO board
Now, you should see the servo rotate 180 degrees, and then rotate in opposite
direction.

Summary

By learning this lesson, you should have known that the Arduino provided a
servo library to control a servo. By using the servo library, you can easily
control a servo. Just enjoy your imagination and make some interesting
applications.

www.adeept.com

- 78 -

Lesson 19 ultrasonic distance sensor
Overview

In this lesson, we will learn how to measure the distance by the ultrasonic
distance sensor.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* Ultrasonic Distance Sensor
- 1* LCD1602
- 1* 10KΩ Potentiometer
- Several Jumper Wires

Principle

This recipe uses the popular Parallax PING ultrasonic distance sensor to
measure the distance of an object ranging from 2 cm to around 3 m.

Ultrasonic sensors provide a measurement of the time it takes for sound to
bounce off an object and return to the sensor. The “ping” sound pulse is
generated when the pingPin level goes HIGH for two micro-seconds. The

www.adeept.com

- 79 -

sensor will then generate a pulse that terminates when the sound returns. The
width of the pulse is proportional to the distance the sound traveled and the
sketch then uses the pulseIn function to measure that duration. The speed of
sound is 340 meters per second, which is 29 microseconds per centimeter. The
formula for the distance of the round trip is: RoundTrip = microseconds / 29.

So, the formula for the one-way distance in centimeters is: microseconds / 29
/ 2

Procedures

1. Build the circuit

www.adeept.com

- 80 -

2.Program

3. Compile the program and upload to Arduino UNO board
Now, when you try to change the distance between the ultrasonic module and
the obstacles, you will find the distance value displayed on the LCD1602 will be
changed.

www.adeept.com

- 81 -

Summary

By learning this lesson, we have learned how to use an LCD screen to read the
distance detected by the ultrasound.I hope you can make other interesting
experiments with ultrasonic modules in your spare time.

www.adeept.com

- 82 -

Lesson 20 Control a servo with ultrasonic
distance sensor

Overview

In this lesson, we will measure the distance with the ultrasonic module, and
then convert the distance into the rotation angle of the servo.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* Ultrasonic Distance Sensor
- 1* Servo
- 1* Breadboard
- Several Jumper Wires

Principle

In this experiment, we collect the distance data between ultrasonic module
and the obstacle with the ultrasonic distance sensor. Then, converting the
distance data into the rotation angle of the servo by programing the Arduino
UNO.

Procedures

1. Build the circuit

www.adeept.com

- 83 -

2.Program

3. Compile the program and upload to Arduino UNO board
Now we just use our hands to move in front of the ultrasound, and the steering
gear can rotate the Angle.

Summary

By learning this lesson, we have mastered how to reading data from the
ultrasound for steering gear to the corresponding point of view, I hope you can
imagination using the learning of all components before make an inter
combination experiment.

www.adeept.com

- 84 -

Lesson 21 Combined LED Experiment
Overview

In this lesson, let's study how to control LED on/off and buzzer to beep in
different frequencies.

Requirement

- 1* Arduino UNO
- 1* USB cable
- 3* button
- 3* LED
- 1* 1kΩresistor
- 1* passive buzzer
- 1* NPN Transistor (S8050)
- 1* breadboard
- 1* Serveral Jumper Wires

Procedures

1. Build the circuit

www.adeept.com

- 85 -

2. Program

3. Compile the program and upload to Arduino UNO board
now when you press down button 1, you can hear the buzzer beeping, then
the LED lights up, and when you press down the button 1 again, the buzzer
beeps, and the LED goes out, when you press down the other two buttons, you
can hear the buzzer beeps with different tones

Summary

In this lesson, you should have known how to control the LED and make the
buzzer beep in different frequencies by multiple buttons. Based on the
knowledge, you can DIY a small piano then!

www.adeept.com

- 86 -

Lesson 22 Ultrasonic Fan

Overview

In this lesson, let's try to make an ultrasonic fan.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* DCmotor
- 1* Ultrasonic Distance Sensor
- 1* Breadboard
- 1* 9v Battery
- Several Jumper Wires

Procedures

1. Build the circuit

www.adeept.com

- 87 -

2. Program

3. Compile the program and upload to Arduino UNO board
When the ultrasonic detects an obstacle nearby ahead, the fan will slow down
spinning. When it can tell the obstacle gets farther, it'll speed up spinning.

Summary

In this lesson, you have learnt how to make an ultrasonic fan. With a good
command of the principle, you can make other amazing projects.

www.adeept.com

- 88 -

Lesson 23 Reversing Radar
Overview

In this lesson, we start to study how to DIY a reversing radar.

Requirement

- 1* Arduino UNO
- 1* USB Cable
- 1* RGB
- 1* passive buzzer
- 1* 1kΩResistor
- 1* NPN Transistor (S8050)
- 4* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Procedures

1. Build the circuit

www.adeept.com

- 89 -

2.Program

3. Compile the program and upload to Arduino UNO board
Now, you can see the color of the RGB LED change accordingly as the
ultrasonic detects different distance results, and the buzzer beeps in different
frequencies.

Summary

By this lesson, you should have learnt the principle of the ultrasonic. Now you
can free your imagination and make more fascinating creative projects
together with the knowledge of the elements learnt about previously.

	Content
	About Arduino
	Lesson 1 Blinking LED
	Lesson 2 Controlling an LED with a button
	Lesson 3 LED Flowing Lights
	Lesson 4 Breathing LED
	Lesson 5 Control LED Brightness by Potentiometer
	Lesson 6 Active Buzzer
	Lesson 7 Controlling Relay
	Lesson 8 Controlling a RGB LED by PWM
	Lesson 9 Tilt Switch
	Lesson 10 Rotary encoder
	Lesson 11 LCD1602
	Lesson 12 Photoresistor
	Lesson 13 Using a thermistor to measure the temperature
	Lesson 14 temperature alarm
	Lesson 15 7-segment display
	Lesson 16 Serial Port
	Lesson 17 DC motor fan
	Lesson 18 Controlling Servo motor
	Lesson 19 ultrasonic distance sensor
	Lesson 20 Control a servo with ultrasonic distance sensor
	Lesson 21 Combined LED Experiment
	Lesson 22 Ultrasonic Fan
	Lesson 23 Reversing Radar

