

Component List

1x LCD1602

1x Servo

1x Potentiometer(10KΩ)

1x Motion Sensor(Tilt Switch)

1x Active Buzzer

1x Relay

2x Switch

2x Button (large)

4x Button (small)

1x Button cap (red)

1x Button cap (white)

1x RGB LED

5x Red LED

2x Green LED

2x Yellow LED

2x Blue LED

2x NPN Transistor (8050)

2x PNP Transistor (8550)

2x 1N4148 Diode

2x 1N4001 Diode

16x Resistor(220Ω)

10x Resistor(1kΩ)

5x Resistor(10kΩ)

5x Resistor(100kΩ)

5x Resistor (1MΩ)

5x Resistor (5.1MΩ)

1x Breadboard

1x Hookup Wire Set

20x Male to Female Jumper Wires

1x Header (40 pin)

1x Band Resistor Card

1x Project Box

Preface

About This Kit

This is an entry-level learning kit for Raspberry Pi. Some common electronic

components and sensors are included. Through the learning, you will get a

better understanding of Raspberry Pi, and be able to make fascinating works

based on Raspberry Pi.

About Adeept

Adeept is a technical service team of open source software and hardware.

Dedicated to applying the Internet and the latest industrial technology in open

source area, we strive to provide best hardware support and software service

for general makers and electronic enthusiasts around the world. We aim to

create infinite possibilities with sharing. No matter what field you are in, we

can lead you into the electronic world and bring your ideas into reality.

If you have any problems for learning, please contact us at support@adeept.com.

We will do our best to help you solve the problem.

support@adeept.com

 Content

About the Raspberry Pi.. - 1 -

Raspberry Pi Pin Numbering Introduction ... - 2 -

Raspberry Pi GPIO Library Introduction ... - 4 -

How to Use wiringPi and RPi.GPIO .. - 6 -

Lesson 1 Blinking LED ... - 10 -

Lesson 2 Buzzer ... - 16 -

Lesson 3 Tilt Switch .. - 20 -

Lesson 4 Controlling an LED by Button .. - 22 -

Lesson 5 LED Flowing Lights .. - 27 -

Lesson 6 Breathing LED ... - 30 -

Lesson 7 Controlling an RGB LED with PWM... - 34 -

Lesson 8 Relay ... - 37 -

Lesson 9 LCD1602 .. - 40 -

Lesson 10 Controlling an LED Through LAN... - 44 -

Lesson 11 How to control a servo ... - 48 -

 www.adeept.com

 - 1 -

About the Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a

computer monitor or TV, and uses a standard keyboard and mouse. It is a

capable little device that enables people of all ages to explore computing, and

to learn how to program in languages like Scratch and Python. It’s capable of

doing everything you’d expect a desktop computer to do, from browsing the

internet and playing high-definition video, to making spreadsheets,

word-processing, and playing games.

What’s more, the Raspberry Pi has the ability to interact with the outside world,

and has been used in a wide array of digital maker projects, from music

machines and parent detectors to weather stations and tweeting birdhouses

with infra-red cameras. We want to see the Raspberry Pi being used by kids all

over the world to learn to program and understand how computers work.

Learn more at:

www.adeept.com

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

 www.adeept.com

 - 2 -

Raspberry Pi Pin Numbering Introduction

There are three methods for numbering Raspberry Pi’s GPIO:

1. Numbering according to the physical location of the pins, from left to right,

top to bottom – the left is odd, and the right is even.

2. Numbering according the GPIO registers of BCM2835/2836/2837 SOC.

3. Numbering according the GPIO library wiringPi.

 www.adeept.com

 - 3 -

 www.adeept.com

 - 4 -

Raspberry Pi GPIO Library Introduction

Currently, there are two major GPIO libraries for Raspberry Pi: RPi.GPIO and

wiringPi.

RPi.GPIO:

RPi.GPIO is a python module to control Raspberry Pi GPIO channels. For more

information, please visit:

https://pypi.python.org/pypi/RPi.GPIO/

For examples and documentation:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

The RPi.GPIO module is pre-installed in the official Raspbian operating system,

thus you can use it directly.

wiringPi:

The wiringPi is a GPIO access library written in C language for BCM2835/6/7

SOC used in the Raspberry Pi. It’s released under the GNU LGPLv3 license and

is usable from C and C++ and many other languages with suitable wrappers.

It’s designed to be familiar to people who have used the Arduino “wiring”

system.

For more information about wiringPi, please visit: http://wiringpi.com/

Install wiringPi:

Step 1: Get the source code

$ git clone git://git.drogon.net/wiringPi

Step 2: Compile and install

$ cd wiringPi

$ git pull origin

$ sudo ./build

Press Enter, and the script “build” will automatically compile wiringPi source

code and then install it to the Raspberry Pi.

https://pypi.python.org/pypi/RPi.GPIO/
http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
http://wiringpi.com/

 www.adeept.com

 - 5 -

Next, verify whether the wiringPi is installed successfully or not:

wiringPi includes a command-line utility gpio which can be used to program

and set up the GPIO pins. You can use it to read and write the pins or even

control them from shell scripts.

You can verify whether the wiringPi is installed successfully or not by the

following commands:

$ sudo gpio -v

$ sudo gpio readall

If the information above is shown, it indicates that the wiringPi has been

installed successfully.

 www.adeept.com

 - 6 -

How to Use wiringPi and RPi.GPIO

For how to use the wiringPi C library and RPi.GPIO Python module, here we

take a blinking LED for example.

Step 1: Build the circuit according to the following schematic diagram

 Note: Resistance = 220Ω

For Python users:

Step 2: Create a file named led.py

$ sudo touch led.py

Step 3: Open the file led.py with vim or nano

$ sudo vim led.py

 www.adeept.com

 - 7 -

Write the following source code, then save and exit.

Step 4: Run

$ sudo python led.py

Now you should see the LED blinking. Press Ctrl+C and the program execution

will be terminated.

For C language users:

Step 2: Create a file named led.c

$ sudo touch led.c

 www.adeept.com

 - 8 -

Step 3: Open the file led.c with vim or nano

$ sudo vim led.c

Write the following source code, then save and exit.

Step 4: Compile the code

$ sudo gcc led.c -lwiringPi

After the command is executed, you'll find a file named a.out appear in the

current directory. It is an executable program.

Step 5: Run

$ sudo ./a.out

 www.adeept.com

 - 9 -

Now you should see that the LED is blinking. Press Ctrl+C, and the program

execution will be terminated.

Resources:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

http://wiringpi.com/reference/

NOTE:

Before you continue learning, please copy the source code provided with the

kit to your Raspberry Pi's /home/ directory.

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
http://wiringpi.com/reference/

 www.adeept.com

 - 10 -

Lesson 1 Blinking LED

Overview

In this tutorial, we will start the journey of learning Raspberry Pi. To begin with simple

experiments, we will first learn how to control an LED.

Components

- 1* Raspberry Pi

- 1* 220Ω Resistor

- 1* LED

- 1* Breadboard

- 2* Jumper wires

Principle

In this lesson, we will program the Raspberry Pi to output high level (+3.3V) and low

level (0V), and then make an LED which is connected to the Raspberry Pi GPIO flicker

with a certain frequency.

1. What is LED?

The LED is the abbreviation of light emitting diode. It is usually made of gallium

arsenide, gallium phosphide semiconductor materials. The LED has two electrodes, a

positive electrode and a negative electrode. It lights up only when a forward current

passes, and it can flash red, blue, green or yellow, etc. The color of light depends on

the materials it is made.

In general, the drive current for LED is 5-20mA. Therefore, in reality it usually needs an

extra resistor for current limitation so as to protect the LED.

2. What is resistor?

The main function of the resistor is to limit current. In the circuit, the character „R‟

represents resistor, and the unit of resistance is ohm(Ω).

A band resistor is used in this experiment. It is a resistor with a surface coated with

some particular color through which the resistance can be identified directly.

There are two methods for connecting an LED with Raspberry Pi GPIO:

①

 www.adeept.com

 - 11 -

As shown in the schematic diagram, the anode of the LED is connected to VCC (+3.3V),

and the cathode to the Raspberry Pi GPIO. When the GPIO outputs low level, the LED

is on; when it outputs high, the LED is off.

②

As shown in the schematic diagram above, the anode of LED is connected to

Raspberry Pi GPIO after a resistor, and the cathode is connected to ground (GND).

When the GPIO outputs high level, the LED is on; when it outputs low level, the LED is

off.

The resistance of a current-limiting resistor is calculated as follows: 5~20mA current is

required to make an LED on, and the output voltage of the Raspberry Pi GPIO is 3.3V,

so we can get the resistance:

R = U / I = 3.3V / (5~20mA) = 165Ω~660Ω

In this experiment, we use a 220ohm resistor.

The experiment is made based on method ① – use pin 11 of Raspberry Pi to control

an LED. When pin 11 of Raspberry Pi is programmed to output low level, the LED will

light up. Next, delay for some time. And then program pin 11 to high level to make the

LED off. Repeat the above process and you can get a blinking LED then.

3. Key functions

For C language users:

● int wiringPiSetup (void)

The function must be called at the start of your program, or your program will fail to

work. You may experience symptoms from it simply not working to segfaults and

timing issues.

Note : This function needs to be called with root privileges.

● void pinMode (int pin, int mode)

This function sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or

GPIO_CLOCK. Note that only wiringPi pin 1 (BCM_GPIO 18) supports PWM output and

only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK output mode.

The function has no effect when in Sys mode. If you need to change the pin mode,

then you can do it with the gpio program in a script before you starting your program.

● void digitalWrite (int pin, int value)

 www.adeept.com

 - 12 -

Write the value HIGH or LOW (1 or 0) to a given pin which must have been set

previously as output. WiringPi treats any non-zero number as HIGH, while 0 is the only

representation of LOW.

● void delay (unsigned int howLong)

This function causes program execution to pause for at least howLong milliseconds.

Due to the multi-tasking nature of Linux it could be longer. Note that the maximum

delay is an unsigned 32-bit integer or approximately 49 days.

For Python users:

● GPIO.setmode(GPIO.BOARD)

There are two ways of numbering the IO pins on a Raspberry Pi within RPi.GPIO. The

first is using the BOARD numbering system. This refers to the pin numbers on the P1

header of the Raspberry Pi board. The advantage of this numbering system is that

your hardware will always work, regardless of the board revision of the RPi. You will

not need to rewire your connector or change your code.

The second numbering system is by the BCM(GPIO.BCM) numbers. This is a lower level

way of working - it refers to the channel numbers on the Broadcom SOC. You have to

always work with a diagram about which channel number goes to which pin on the

RPi board. Your script could break between revisions of Raspberry Pi boards.

● GPIO.setup(channel, mode)

The function sets every channel you are using as input(GPIO.IN) or output(GPIO.OUT).

● GPIO.output(channel, state)

The function sets the output state of a GPIO pin. The argument channel is the channel

number based on the numbering system you have specified (BOARD or BCM). State

can be 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

● GPIO.cleanup()

At the end any program, it is a good habit to clean up all the resources you might

have used. This is no different from RPi.GPIO. By returning all channels you have used

back to input without pull up/down, you can avoid accidental damage to your RPi

caused by pin shortout. Note that this will only clean up GPIO channels that your

script ever has used. And it also clears the pin numbering system in use.

Procedures

Step 1: Build the circuit

 www.adeept.com

 - 13 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/01_blinkingLed/blinkingLed.c)

#include <wiringPi.h>

#include <stdio.h>

#define LedPin 0

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiringPi failed, print message to

screen

 printf("setup wiringPi failed !\n");

 return -1;

 }

 pinMode(LedPin, OUTPUT);

 while(1){

 digitalWrite(LedPin, LOW); //led on

 printf("led on...\n");

 delay(500);

 digitalWrite(LedPin, HIGH); //led off

 printf("...led off\n");

 delay(500);

 }

 return 0;

}

Step 3: Compile

$ gcc blinkingLed.c -o led -lwiringPi

 www.adeept.com

 - 14 -

Note : The parameter „-o‟ is to specify a file name for the compiled executable

program. If you do not use this parameter, the default file name is a.out.

Step 4: Run

$ sudo ./led

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/01_blinkingLed_1.py)

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

LedPin = 11 # pin11

def setup():

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output

 GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def loop():

 while True:

 print '...led on'

 GPIO.output(LedPin, GPIO.LOW) # led on

 time.sleep(0.5)

 print 'led off...'

 GPIO.output(LedPin, GPIO.HIGH) # led off

 time.sleep(0.5)

def destroy():

 GPIO.output(LedPin, GPIO.HIGH) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

Step 3: Run

$ sudo python 01_blinkingLed_1.py

Now you can see the LED blinking.

 www.adeept.com

 - 15 -

 www.adeept.com

 - 16 -

Lesson 2 Buzzer

Overview

In this lesson, we will learn how to program the Raspberry Pi to make an active buzzer

beep.

Components

- 1* Raspberry Pi

- 1* Active buzzer

- 1* 1 kΩ Resistor

- 1* NPN Transistor (S8050)

- 1* Breadboard

- Several jumper wires

Principle

A buzzer or beeper is an audio signaling device. As a type of electronic buzzer with an

integrated structure, which uses DC power supply, buzzers are widely used in

computers, printers, photocopiers, alarms, electronic toys, automotive electronic

equipments, telephones, timers and other electronic products for voice devices.

Buzzers can be categorized as active and passive buzzers (See the following pictures).

Place the pins of the buzzer face up, and then you can see the two types of buzzer are

different - the buzzer with a green circuit board onside is a passive one.

In this lesson, the buzzer we used is active buzzer. Active buzzers will sound as long as

they are powered. We can program to make the Raspberry Pi output alternating high

and low levels to make the buzzer beep.

A slightly larger current is needed to make a buzzer beep. However, the output current

of Raspberry Pi GPIO is too low, so we need a transistor to help.

The main function of a transistor is to enlarge the voltage or current. It can also be

used to control the circuit conduction or deadline. Transistors can be divided into two

kinds: NPN, like the S8050 we provided; PNP, like the S8550 provided. The transistor

 www.adeept.com

 - 17 -

we use is as shown below:

There are two kinds of driving circuit for the buzzer:

 Figure 1 Figure 2

Figure 1: Set the Raspberry Pi GPIO as a high level. Then the transistor S8050 will

conduct and the buzzer will make sounds. Set the GPIO as low, and the transistor

S8050 will be de-energized and the buzzer stops beeping.

Figure 2: Set the Raspberry Pi GPIO as low level. The transistor S8550 will be energized

and the buzzer will beep. Set the GPIO as a high, then the transistor S8550 will be

de-energized and the buzzer beeping will stop.

Procedures

Step 1: Build the circuit

 www.adeept.com

 - 18 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/02_buzzer/buzzer.c)

Step 3: Compile

$ gcc buzzer.c -o buzzer -lwiringPi

Step 4: Run

$ sudo ./buzzer

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/02_buzzer.py)

Step 3: Run

$ sudo python 02_buzzer.py

Now you can hear the buzzer beeping.

 www.adeept.com

 - 19 -

Summary

After learning this lesson, you can master the basic principle of the buzzer and

transistor. Also you've learned how to program the Raspberry Pi and then control the

buzzer. Now you can use what you've learned in this lesson to make some interesting

things!

 www.adeept.com

 - 20 -

Lesson 3 Tilt Switch

Overview

In this lesson, we will learn how to use the tilt switch and change the status of an LED

by changing the tilt angle of the tilt switch.

Components

- 1* Raspberry Pi

- 1* Tilt switch

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

The tilt switch is also called ball switch. When the switch is tilted at a specific angle, the

contacts will be connected, while tilting the switch back will cause the metallic ball to

move away from that set of contacts, thus breaking the circuit.

Procedures

Step 1: Build the circuit

 www.adeept.com

 - 21 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/03_tiltSwitch/tiltSwitch.c)

Step 3: Compile

$ gcc tiltSwitch.c -o tiltSwitch -lwiringPi

Step 4: Run

 $ sudo ./tiltSwitch

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/03_tiltSwitch.py)

Step 3: Run

 $ sudo python 03_tiltSwitch.py

Now, tilt the breadboard at a certain angle, and you will see the state of LED changed.

Summary

In this lesson, we have learned the principle and application of the tilt switch. It is a

very simple electronic component, but simple devices can often make interesting

things. Try to make your own works!

 www.adeept.com

 - 22 -

Lesson 4 Controlling an LED by Button

Overview

In this lesson, we will learn how to detect the status of a button, and then toggle the

status of the LED based on the status of the button.

Components

- 1* Raspberry Pi

- 1* Button

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

1. Button

Buttons are a common component used to control electronic devices. They are usually

used as switches to connect or disconnect circuits. Although buttons come in a variety

of sizes and shapes, the one used in this experiment will be a 12mm button as shown

below.

The button we used is a normally open type one. The two contacts of a button are in

the off state under the normal conditions; only when the button is pressed they are

closed.

The schematic diagram is as follows:

 www.adeept.com

 - 23 -

The button jitter must happen in the process of using. The jitter waveform is as the

flowing:

Each time you press the button, the Raspberry Pi will regard you have pressed the

button many times due to the jitter of the button. You should deal with the jitter of

buttons before using. You can eliminate the jitter through software programming.

Besides, you can use a capacitor to solve the issue. Take the software method for

example. First, detect whether the level of button interface is low level or high level. If

it is low level, 5~10 MS delay is needed. Then detect whether the level of button

interface is low or high. If the signal is low, you can infer that the button is pressed

once. You can also use a 0.1uF capacitor to avoid the jitter of buttons. The schematic

diagram is as shown below:

2. Interrupt

Hardware interrupts were introduced as a way to reduce wasting the processor's

valuable time in polling loops, waiting for external events. They may be implemented

in hardware as a distinct system with control lines, or they may be integrated into the

memory subsystem.

3. Key functions:

For C language users:

● void pullUpDnControl (int pin, int pud)

This sets the pull-up or pull-down resistor mode on the given pin, which should be set

as an input. Unlike the Arduino, the BCM2835 has both pull-up a down internal

resistors. The parameter pud should be; PUD_OFF, (no pull up/down), PUD_DOWN

(pull to ground) or PUD_UP (pull to 3.3v). The internal pull up/down resistors have a

 www.adeept.com

 - 24 -

value of approximately 50KΩ on the Raspberry Pi.

This function has no effect on the Raspberry Pi‟s GPIO pins when in Sys mode. If you

need to activate a pull-up/pull-down, then you can do it with the gpio program in a

script before you start your program.

● int digitalRead (int pin)

This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0)

depending on the logic level at the pin.

● int wiringPiISR (int pin, int edgeType, void (*function)(void))

This function registers a function to received interrupts on the specified pin. The

edgeType parameter is either INT_EDGE_FALLING, INT_EDGE_RISING, INT_EDGE_BOTH

or INT_EDGE_SETUP. If it is INT_EDGE_SETUP then no initialisation of the pin will

happen – it‟s assumed that you have already setup the pin elsewhere (e.g. with the

gpio program), but if you specify one of the other types, then the pin will be exported

and initialised as specified. This is accomplished via a suitable call to the gpio utility

program, so it need to be available.

The pin number is supplied in the current mode – native wiringPi, BCM_GPIO, physical

or Sys modes.

This function will work in any mode, and does not need root privileges to work.

The function will be called when the interrupt triggers. When it is triggered, it‟s cleared

in the dispatcher before calling your function, so if a subsequent interrupt fires before

you finish your handler, then it won‟t be missed. (However it can only track one more

interrupt, if more than one interrupt fires while one is being handled then they will be

ignored)

This function is run at a high priority (if the program is run using sudo, or as root) and

executes concurrently with the main program. It has full access to all the global

variables, open file handles and so on.

For Python users:

● GPIO.input(channel)

This is used for reading the value of a GPIO pin. Where channel is the channel number

based on the numbering system you have specified (BOARD or BCM)). This will return

either 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

● GPIO.add_event_detect(channel, mode)

The event_detected() function is designed to be used in a loop with other things, but

unlike polling it is not going to miss the change in state of an input while the CPU is

busy working on other things. This could be useful when using something like Pygame

or PyQt where there is a main loop listening and responding to GUI events in a timely

basis.

 www.adeept.com

 - 25 -

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/04_btnAndLed/btnAndLed_2.c)

Step 3: Compile

$ gcc btnAndLed_2.c -o btnAndLed -lwiringPi

Step 4: Run

$ sudo ./btnAndLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/04_btnAndLed_1.py)

Step 3: Run

$ sudo python 04_btnAndLed_1.py

 www.adeept.com

 - 26 -

Now press the button, and you can see the state of the LED will be toggled between

ON and OFF.

Summary

Through this lesson, you should have learned how to use the Raspberry Pi to detect

the status of an external button, and then toggle the status of LED on/off relying on

the status of the button detected before.

 www.adeept.com

 - 27 -

Lesson 5 LED Flowing Lights

Overview

In the first lesson, we have learned how to make an LED blink by programming the

Raspberry Pi. Now we will use the Raspberry Pi to control 8 LEDs, to make 8 LEDs

show the effects of flowing.

Components

- 1* Raspberry Pi

- 8* LED

- 8* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

The principle of this experiment is very simple and quite similar with that in the first

lesson.

Key function:

● for statements

The for statement is used to repeat a block of statements enclosed in curly braces. An

increment counter is usually used to increment and terminate the loop. The for

statement is useful for any repetitive operation, and is often used in combination with

arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);

}

 www.adeept.com

 - 28 -

The initialization happens first and exactly once. Each time through the loop, the

condition is tested; if it's true, the statement block, and the increment is executed,

then the condition is tested again. When the condition becomes false, the loop ends.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/05_flowingLed/flowingLed.c)

Step 3: Compile

$ gcc flowingLed.c -o flowingLed -lwiringPi

Step 4: Run

 $ sudo ./flowingLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/05_flowingLed.py)

 www.adeept.com

 - 29 -

Step 3: Run

 $ sudo python 05_flowingLed.py

Now, you can see 8 LEDs light up in sequence from the red one on the right side to

others on the left, and next from the left to the right. The LEDs flash like flowing water

repeatedly in a circular way.

Summary

Through this simple but fun experiment, you should have learned more skills in

programming on Raspberry Pi. In addition, you can also modify the circuit and code

provided to achieve even more dazzling effects.

 www.adeept.com

 - 30 -

Lesson 6 Breathing LED

Overview

In this lesson, we will learn how to program the Raspberry Pi to generate PWM signals.

And then we use the PWM square-wave signals to control an LED gradually getting

brighter and then slowly dimmer, much like human breath.

Components

- 1* Raspberry Pi

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital

means. Digital control is used to create a square wave, a signal switched between on

and off. This on-off pattern can simulate voltages in between full on (5 Volts) and off (0

Volts) by changing the portion of the time the signal spends on versus the time that

the signal spends off. The duration of "on time" is called the pulse width. To get

varying analog values, you change, or modulate, that pulse width. If you repeat this

on-off pattern fast enough with an LED for example, the result is as if the signal is a

steady voltage between 0 and 5v controlling the brightness of the LED.

In the following figure, the green lines represent a regular time period. This duration

or period is the inverse of the PWM frequency. In other words, with Raspberry Pi's

PWM frequency at about 500Hz, the green lines would measure 2 milliseconds each. A

call to pwmWrite() is on a scale of 0-1023, such that pwmWrite(1023) requests a 100%

duty cycle (always on), and pwmWrite(511) is a 50% duty cycle (on half the time) for

example.

 www.adeept.com

 - 31 -

Key functions:

For C language users:

● pwmWrite(int pin, int value)

Writes the value to the PWM register for the given pin. The Raspberry Pi has one

on-board PWM pin, pin 1 (BMC_GPIO 18, Phys 12) and the range is 0-1024. Other

PWM devices may have other PWM ranges.

This function is not able to control the Pi‟s on-board PWM when in Sys mode.

For Python users:

● p = GPIO.PWM(channel, frequency)

This is used for creating a PWM.

● p.start(dc)

Start the pwm you have created.

● p.ChangeFrequency(freq)

Change the frequency of pwm.

● p.stop()

Stop the pwm.

 www.adeept.com

 - 32 -

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/06_breathingLed/breathingLed.c)

Step 3: Compile

$ gcc breathingLed.c -o breathingLed -lwiringPi

Step 4: Run

 $ sudo ./breathingLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/06_breathingLed.py)

Step 3: Run

 $ sudo python 06_breathingLed.py

Now, you should see the LED lights up and gets gradually brighter, and then slowly

 www.adeept.com

 - 33 -

turns dimmer. The process repeats circularly, and with the particular rhythm it looks

like animals' breath.

Summary

By learning this lesson, you should have mastered the basic principles of the PWM,

and get skilled at the PWM programming on the Raspberry Pi platform.

 www.adeept.com

 - 34 -

Lesson 7 Controlling an RGB LED with PWM

Overview

In this lesson, we will program the Raspberry Pi for RGB LED control, and make the

RGB LED emit light of various colors.

Components

- 1* Raspberry Pi

- 1* RGB LED

- 3* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

RGB LEDs consist of three LEDs in different colors: red, green and blue. These three

colored LEDs are capable of producing any color. Tri-color LEDs with red, green, and

blue emitters, in general use a four-wire connection with one common lead (anode or

cathode).

What we use in this experiment is a common anode RGB LED. The longest pin is the

common anode of the three LEDs. The pin is connected to the +3.3V pin of the

Raspberry Pi, and the rest pins are connected to pin 11, pin 12, and pin 13 of

Raspberry Pi with a current limiting resistor between.

In this way, we can control the color of the RGB LED by 3-channel PWM signal.

Key functions:

● int softPwmCreate (int pin, int initialValue, int pwmRange)

This creates a software controlled PWM pin. You can use any GPIO pin and the pin

numbering will be that of the wiringPiSetup() function you used. Use 100 for the

pwmRange, then the value can be anything from 0 (off) to 100 (fully on) for the given

pin.

The return value is 0 for success. Anything else and you should check the global errno

variable to see what went wrong.

 www.adeept.com

 - 35 -

● void softPwmWrite (int pin, int value)

This updates the PWM value on the given pin. The value is checked to be in-range and

pins that haven‟t previously been initialised via softPwmCreate will be silently ignored.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/07_rgbLed/rgbLed.c)

Step 3: Compile

$ gcc rgbLed.c -o rgbLed -lwiringPi -lpthread

NOTE: The compiler option „-lpthread‟ is required because the implementation of

softPwm is based on Linux multithreading.

Step 4: Run

 $ sudo ./rgbLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/07_rgbLed.py)

 www.adeept.com

 - 36 -

Step 3: Run

$ sudo python 07_rgbLed.py

Now, you can see the RGB LED flashing red, green, blue, yellow, white and purple light,

and then the RGB LED goes out. Each state lasts for 1s each time, and the LED flashes

colors repeatedly in such sequence.

Summary

By learning this lesson, you should have already got the principle and the

programming of RGB LED. Now you can use your imagination to achieve even more

cool ideas based on what you learned in this lesson.

 www.adeept.com

 - 37 -

Lesson 8 Relay

Overview

In this lesson, we will learn how to control a relay to break or connect a circuit.

Components

- 1* Raspberry Pi

- 1* Relay

- 1* NPN Transistor (S8050)

- 1* Diode (1N4001)

- 1* 1KΩ Resistor

- 1* Breadboard

- Several jumper wires

Principle

A relay is an electrically operated switch. It is generally used in automatic control

circuit. Actually, it is an "automatic switch" which uses low current to control high

current. It plays a role of automatic regulation, security protection and circuit switch.

When an electric current is passed through the coil it generates a magnetic field that

activates the armature, and the consequent movement of the movable contact (s)

either makes or breaks (depending upon construction) a connection with a fixed

contact. If the set of contacts was closed when the relay was de-energized, then the

movement opens the contacts and breaks the connection, and vice versa if the

contacts were open. When the current to the coil is switched off, the armature is

returned by a force, approximately half as strong as the magnetic force, to its relaxed

position. Usually this force is provided by a spring, but gravity is also used commonly

in industrial motor starters. Most relays are manufactured to operate quickly. In a

low-voltage application this reduces noise; in a high voltage or current application it

reduces arcing.

When the coil is energized with direct current, a diode is often placed across the coil

to dissipate the energy from the collapsing magnetic field at deactivation, which

would otherwise generate a voltage spike dangerous to semiconductor circuit

components.

Procedures

Step 1: Build the circuit

 www.adeept.com

 - 38 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/08_relay/relay.c)

Step 3: Compile

$ gcc relay.c -o relay -lwiringPi

Step 4: Run

$ sudo ./relay

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/08_relay.py)

Step 3: Run

$ sudo python 08_relay.py

Now you can hear tick-tocks, which are the sounds of relay toggling.

 www.adeept.com

 - 39 -

 www.adeept.com

 - 40 -

Lesson 9 LCD1602

Overview

In this lesson, we will learn how to use a character display device - LCD1602 on the

Raspberry Pi platform. We first make the LCD1602 display a string "Hello Geeks!"

scrolling, and then display“Adeept”and“www.adeept.com”statically.

Components

- 1* Raspberry Pi

- 1* LCD1602

- 1* 10KΩ Potentiometer

- 1* Breadboard

- Several jumper wires

Principle

LCD1602 is a kind of character LCD display. The LCD has a parallel interface, meaning

that the microcontroller has to manipulate several interface pins at once to control the

display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're writing

data to. You can select either the data register, which holds what goes on the screen,

or an instruction register, which is where the LCD's controller looks for instructions on

what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The status of these pins (high or low) is the bits that you're

writing to a register when you write, or the values when you read.

● There are also a display contrast pin (Vo), power supply pins (+5V and Gnd) and LED

Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD, control the display

contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the image of

what you want to display into the data registers, then putting instructions in the

instruction register. The wiringPiDev Library simplifies this for you, so you don't need

to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit

mode requires six I/O pins from the Raspberry Pi, while the 8-bit mode requires 10

pins. For displaying text on the screen, you can do most everything in 4-bit mode, so

example shows how to control a 2x16 LCD in 4-bit mode.

A potentiometer, informally a pot, is a three-terminal resistor with a sliding or rotating

contact that forms an adjustable voltage divider. If only two terminals are used, one

http://www.adeept.com/
query:potentiometer

 www.adeept.com

 - 41 -

end and the wiper, it acts as a variable resistor or rheostat.

Key functions:

● int lcdInit (int rows, int cols, int bits, int rs, int strb, int d0, int d1, int d2, int d3, int

d4, int d5, int d6, int d7)

This is the main initialisation function and must be called before you use any other

LCD functions.

Rows and cols are the rows and columns on the display (e.g. 2, 16 or 4,20). Bits is the

number of bits wide on the interface (4 or 8). The rs and strb represent the pin

numbers of the displays RS pin and Strobe (E) pin. The parameters d0 through d7 are

the pin numbers of the 8 data pins connected from the Pi to the display. Only the first

4 are used if you are running the display in 4-bit mode.

The return value is the „handle‟ to be used for all subsequent calls to the lcd library

when dealing with that LCD, or -1 to indicate a fault. (Usually incorrect parameters)

● lcdPosition (int handle, int x, int y)

Set the position of the cursor for subsequent text entry. x is the column and 0 is the

left-most edge. y is the line and 0 is the top line.

● lcdPuts (int handle, const char *string)

● lcdPrintf (int handle, const char *message, …)

● lcdPutchar (int handle, unsigned char data)

These output a single ASCII character, a string or a formatted string using the usual

printf formatting commands.

At the moment, there is no clever scrolling of the screen, but long lines will wrap to

the next line, if necessary.

Procedures

Step 1: Build the circuit

 www.adeept.com

 - 42 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/09_lcd1602/lcd1602_2.c)

Step 3: Compile

$ gcc lcd1602_2.c -o lcd1602_2 -lwiringPi -lwiringPiDev

Step 4: Run

 $ sudo ./lcd1602_2

Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/09_lcd1602.py)

Step 3: Run

 $ sudo python 09_lcd1602.py

Now, you can see the string "Hello Geeks!" shown on the LCD1602 scrolling, and then

the string "Adeept" and "www.adeept.com" displayed statically.

http://www.adeept.com/

 www.adeept.com

 - 43 -

Summary

After learning the experiment, you should have already mastered the driver of the

LCD1602. Now you can make something more interesting based on this lesson and the

previous lessons learned.

 www.adeept.com

 - 44 -

Lesson 10 Controlling an LED Through LAN

Overview

In this lesson, we will introduce TCP and socket, and then how to program the

Raspberry Pi to control an LED through the local area network (LAN).

Components

- 1* Raspberry Pi

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

1. TCP

The Transmission Control Protocol (TCP) is a core protocol of the Internet Protocol

Suite. It originated in the initial network implementation in which it complemented the

Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP.

TCP provides reliable, ordered, and error-checked delivery of a stream of octets

between applications running on hosts communicating over an IP network. TCP is the

protocol that major Internet applications such as the World Wide Web, email, remote

administration and file transfer rely on. Applications that do not require reliable data

stream service may use the User Datagram Protocol (UDP), which provides a

connectionless datagram service that emphasizes reduced latency over reliability.

2. Socket

A network socket is an endpoint of an inter-process communication across a

computer network. Today, most communication between computers is based on the

Internet Protocol; therefore most network sockets are Internet sockets.

A socket API is an application programming interface (API), usually provided by the

operating system, that allows application programs to control and use network

sockets. Internet socket APIs are usually based on the Berkeley sockets standard.

A socket address is the combination of an IP address and a port number, much like

one end of a telephone connection is the combination of a phone number and a

particular extension. Based on this address, internet sockets deliver incoming data

packets to the appropriate application process or thread.

Several Internet socket types are available:

1. Datagram sockets, also known as connectionless sockets, which use User Datagram

Protocol (UDP).

2. Stream sockets, also known as connection-oriented sockets, which use Transmission

Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP).

 www.adeept.com

 - 45 -

3. Raw sockets (or Raw IP sockets), typically available in routers and other network

equipment. Here the transport layer is bypassed, and the packet headers are made

accessible to the application.

In this experiment, our program is based on stream socket, and the program is divided

into two parts, the client and the server. The server routine is run on the Raspberry Pi,

and the client routine is run on the PC. So you can send command to the server

through the client, and then control the LED connected to the Raspberry Pi.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the server code with vim or nano on the Raspberry Pi.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/10_TCPCtrlLed/ledServer.c)

Step 3: Compile(On Raspberry Pi)

$ gcc ledServer.c -o ledServer -lwiringPi

Step 4: Edit and save the client code with vim or nano on the PC.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/10_TCPCtrlLed/ledClient.c)

Step 5: Compile (On Linux PC)

$ gcc ledClient.c -o ledClient

 www.adeept.com

 - 46 -

Step 6: Run

$ sudo ./ledServer (On Raspberry Pi)

$./ledClient 192.168.1.188 (On PC, modify the IP Address to your Raspberry Pi‟s IP

Address)

Now, input “ON” in the terminal and then press Enter. The LED connected to the

Raspberry Pi will light up; input “OFF” and the LED goes out.

For Python users:

Step 2: Edit and save the server code with vim or nano on the Raspberry Pi.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/10_TCPCtrlLed/ledServer.py)

Step 3: Edit and save the client code with vim or nano on the PC.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/10_TCPCtrlLed/ledClient.py)

Step 4: Run

 $ sudo python ledServer.py (On Raspberry Pi)

 $ python ledClient.py (On PC)

Now, input “ON” in the terminal and then press Enter. The LED connected to the

Raspberry Pi will light up; input “OFF” and the LED goes out.

 www.adeept.com

 - 47 -

Summary

By learning this lesson, you should have mastered the basic principles of

inter-computer communication. This lesson can help you open the door to learn the

Internet of Things (IoT).

 www.adeept.com

 - 48 -

Lesson 11 How to control a servo

Overview

In this lesson, we will introduce a new electronic device (Servo) to you, and tell you

how to control it with Raspberry Pi.

Requirement

- 1* Raspberry Pi

- 1* Servo

- 1* Breadboard

- Several Jumper wires

Principle

Servo is a type of geared motor that can only rotate 180 degrees. It is controlled by

sending pulses signal from your microcontroller. These pulses tell the servo what

position it should move to.

Servo consists of shell, circuit board, non-core motor, gear and location detection. Its

working principle is as follow: Raspberry Pi sends PWM signal to servo motor, and

then this signal is processed by IC on circuit board to calculate rotation direction to

drive motor, and then this driving power is transferred to swing arm by reduction gear.

At the same time, position detector returns location signal to judge whether set

location is reached or not.

The relationship between the rotation angle of the servo and pulse width as shown

below:

Procedures

Step 1: Build the circuit

 www.adeept.com

 - 49 -

For C language user:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_C_Code_for_RPi/11_servo/servo.c)

Step 3: Compile the program

$ gcc servo.c -o servo -lwiringPi

Step 4: Run the program

 $ sudo ./servo

For Python user:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_LCD1602_Starter_Kit_Python_Code_for_RPi/11_servo.py)

Step 3: Run the program

$ sudo python 11_servo.py

Press Enter, you should see the servo motor rotate 180 degrees. And then rotate in

opposite direction.

 www.adeept.com

 - 50 -

