

Package List

No. Name Picture Qty

1 LCD1602

1

2 I2C Interface Module

1

3
DHT-11 Temperature and

humidity Sensor

1

4
DS18B20 Digital temperature

Sensor

1

5
Ultrasonic Distance Sensor

Module

1

6 ADC0832 Module

1

7 BMP180 Barometer Sensor

1

8 ADXL345 Accelerometer

1

9 PS2 Joystick Module

1

10 Relay Module

1

11 DC Motor Module

1

12 Segment Display Module

1

13 8x8 LED Matrix Module

1

14 Potentiometer Module

1

15 Slide Potentiometer Module

1

16 Rotary Encoder Module

1

17 PIR Sensor Module

1

18 MQ-2 Gas Sensor Module

1

19 LED Bar Graph Module

1

20 Active Buzzer Module

1

21 Passive Buzzer Module

1

22 MIC Module

1

23 Touch Button Module

1

24 Line Finder Module

1

25 Flame Sensor Module

1

26 Vibration Sensor Module

1

27 CM Module

1

28 Water Level Sensor Module

1

29 Soil Moisture Sensor Module

1

30 Photoresistor Module

1

31
Analog Temperature

Sensor(Thermistor Module)

1

32 Hall Sensor Module

1

33 Limit Switch Module

1

34 Reed Module

1

35 RGB LED Module

1

36 Laser Transmitter Module

1

37 Laser Receiver Module

1

38 Button Module

4

39 LED Module

4

40 GPIO Extension Board

1

41 40P GPIO Cable

1

42 3-Pin Wires

8

43 4-Pin Wires

5

44 5-Pin Wires

3

45 Hookup Wire Set

1

46 2-Pin Female to Female Wires

1

47 Male to Female Jumper Wires

20

48 Breadboard

1

49 Band Resistor Card

1

Preface

About Adeept

Adeept is a technical service team of open source software and hardware.

Dedicated to applying the Internet and the latest industrial technology in

open source area, we strive to provide best hardware support and software

service for general makers and electronic enthusiasts around the world. We

aim to create infinite possibilities with sharing. No matter what field you are in,

we can lead you into the electronic world and bring your ideas into reality.

If you have any problems for learning, please contact us at

support@adeept.com, or please ask questions in our forum

www.adeept.com. We will do our best to help you solve the problem.

support@adeept.com
http://www.adeept.com/

Content

About the Raspberry Pi .. 10

Raspberry Pi Pin Numbering Introduction .. 11

Raspberry Pi GPIO Library Introduction ... 13

How to Use wiringPi and RPi.GPIO .. 15

Lesson 1 Blinking LED ... 19

Lesson 2 Controlling an LED by Button .. 22

Lesson 3 Controlling an RGB LED by PWM .. 25

Lesson 4 Active Buzzer .. 28

Lesson 5 Passive Buzzer .. 31

Lesson 6 Controlling an LED by Hall Sensor .. 34

Lesson 7 Controlling an LED by Reed ... 37

Lesson 8 How to Use a Relay .. 40

Lesson 9 Laser Transmitter .. 43

Lesson 10 Laser Receiver ... 46

Lesson 11 How to Control a DC Motor .. 49

Lesson 12 Controlling an LED by Limit Switch ... 52

Lesson 13 Controlling an LED by Vibration Switch ... 55

Lesson 14 Rotary Encoder ... 59

Lesson 15 Controlling an LED by Touch Button ... 63

Lesson 16 Movement Detection Based on PIR ... 67

Lesson 17 Flame Sensor .. 71

Lesson 18 Line Finder ... 74

Lesson 19 Measuring the Temperature via DS18B20 .. 77

Lesson 20 Temperature & Humidity Sensor - DHT-11 .. 82

Lesson 21 Measuring the Distance ... 85

Lesson 22 Acceleration Sensor - ADXL345 .. 88

Lesson 23 Barometric Pressure Sensor - BMP180 .. 91

Lesson 24 Dot-matrix Display ... 94

Lesson 25 LED Bar Graph ... 97

Lesson 26 How to Drive the Segment Display .. 100

Lesson 27 Potentiometer ... 103

Lesson 28 Photoresistor .. 108

Lesson 29 Thermistor ... 111

Lesson 30 Water Level Detection .. 115

Lesson 31 Soil Moisture Detection ... 118

Lesson 32 MQ-2 Gas Sensor .. 121

Lesson 33 Sound Sensor .. 125

Lesson 34 PS2 Joystick .. 128

Lesson 35 LCD1602 Display ... 131

Lesson 36 How to Make a Simple Thermometer(1) .. 137

Lesson 37 How to Make a Simple Thermometer(2) .. 139

Lesson 38 Make a Distance Measuring Device ... 142

Lesson 39 How to Make a Simple Voltmeter(1).. 145

Lesson 40 How to Make a Simple Voltmeter(2).. 148

About the Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a

computer monitor or TV, and uses a standard keyboard and mouse. It is a

capable little device that enables people of all ages to explore computing, and

to learn how to program in languages like Scratch and Python. It’s capable of

doing everything you’d expect a desktop computer to do, from browsing the

internet and playing high-definition video, to making spreadsheets, word-

processing, and playing games.

What’s more, the Raspberry Pi has the ability to interact with the outside world,

and has been used in a wide array of digital maker projects, from music

machines and parent detectors to weather stations and tweeting birdhouses

with infra-red cameras. We want to see the Raspberry Pi being used by kids all

over the world to learn to program and understand how computers work.

Learn more at:

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

Raspberry Pi Pin Numbering Introduction

There are three methods for numbering Raspberry Pi’s GPIO:

1. Numbering according to the physical location of the pins, from left to right,

top to bottom – the left is odd and the right is even.

2. Numbering according the GPIO registers of BCM2835/2836/2837 SOC.

3. Numbering according the GPIO library wiringPi.

Raspberry Pi GPIO Library Introduction
Currently, there are two major GPIO libraries for Raspberry Pi: RPi.GPIO and

wiringPi.

RPi.GPIO:

RPi.GPIO is a python module to control Raspberry Pi GPIO channels. For more

information, please visit:

https://pypi.python.org/pypi/RPi.GPIO/

For examples and documentation:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

The RPi.GPIO module is pre-installed in the official Raspbian operating system,

thus you can use it directly.

wiringPi:

The wiringPi is a GPIO access library written in C language for BCM2835/6/7

SOC used in the Raspberry Pi. It’s released under the GNU LGPLv3 license and

usable from C and C++ and many other languages with suitable wrappers. It’s

designed familiar to people who have practiced the wiring system in the

Arduino software.

For more information about wiringPi, please visit: http://wiringpi.com/

Install wiringPi:

Step 1: Get the source code

$ sudo git clone git://git.drogon.net/wiringPi

Step 2: Compile and install

$ cd wiringPi

$ git pull origin

$ sudo ./build

Press Enter and the script build will automatically compile wiringPi source

code and then install it to the Raspberry Pi.

https://pypi.python.org/pypi/RPi.GPIO/
http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
http://wiringpi.com/

Next, verify whether the wiringPi is installed successfully or not:

wiringPi includes a command-line utility gpio which can be used to program

and set up the GPIO pins. You can use it to read and write the pins or even

control them from shell scripts.

You can verify whether the wiringPi is installed successfully or not by the

following commands:

$ sudo gpio -v

$ sudo gpio readall

If the information above is shown, it indicates that the wiringPi has been

installed successfully.

How to Use wiringPi and RPi.GPIO

For how to use the wiringPi C library and RPi.GPIO Python module, here we

take blinking an LED for example.

Step 1: Build the circuit according to the following schematic diagram

For Python users:

Step 2: Create a file named led.py

$ sudo touch led.py

Step 3: Open the file led.py with vim or nano

$ sudo vim led.py

Write the following source code, then save and exit.

Step 4: Run

$ sudo python led.py

Now you should see the LED blinking. Press ‘Ctrl+C’ and the program

execution will be terminated.

For C language users:

Step 2: Create a file named led.c

$ sudo touch led.c

Step 3: Open the file led.c with vim or nano

$ sudo vim led.c

Write the following source code, then save and exit.

Step 4: Compile the code

$ sudo gcc led.c -lwiringPi

After the command is executed, you'll find a file named a.out appear in the

current directory. It is an executable program.

Step 5: Run

$ sudo ./a.out

Now you should see that the LED is blinking. Press ‘Ctrl+C’ and the program

execution will be terminated.

Resources:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

http://wiringpi.com/reference/

NOTE:

Before you continue learning, please copy the source code provided with the

kit to your Raspberry Pi's /home/ directory, or download the source code

directly from our github repository:

C Language Source Code:

$ git clone https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Python Source Code:

$ git clone https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_Python_Code

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
http://wiringpi.com/reference/
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 1 Blinking LED

Introduction

LED is usually used in office lighting, furniture, decoration, sign board, streetlight, etc.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * LED Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing images:

The Physical picture:

The schematic diagram:

In this experiment, we make the pin 11 of the Raspberry Pi output High/Low by

programming, to control the LED to blink in a certain frequency.

Experimental Procedures

2 2 0 Ω

R 1

D 1

LED_P

1

2

3

P 1

Header

+

-

N C

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/01_LED/blinkingLed.c)

Step 3: Compile

$ sudo gcc blinkingLed.c -o led -lwiringPi

Step 4: Run

$ sudo ./led

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/01_LED/blinkingLed_1.py)

Step 3: Run

$ sudo python blinkingLed_1.py

Now you can see the LED blinking.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 2 Controlling an LED by Button

Introduction

A button is an electronic switch and usually used for device control.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Button Module

- 1 * LED Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

Pin definition:

S Output

+ VCC

- GND

The Physical picture:

The schematic diagram:

In this experiment, we detect the High or Low level of pin 12 of the Raspberry Pi and

then control the LED connected to pin 11 accordingly.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/02_btnAndLed/btnAndLed_1.c)

Step 3: Compile

1 0 K

R 1

1

2

3

P 1

Header

Button

+

-

S

L E D

2 2 0 Ω

R 2

G N D

V C C

V C C

G N D

V C C

G N D

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

$ sudo gcc btnAndLed_1.c -o btnAndLed -lwiringPi

Step 4: Run

$ sudo ./btnAndLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/02_btnAndLed/btnAndLed_1.py)

Step 3: Run

$ sudo python btnAndLed_1.py

Press the button and you can see the LED toggle between on and off.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 3 Controlling an RGB LED by PWM

Introduction

RGB LED is designed based on the principle of three primary colors. In an RGB LED,

three LEDs in red, green, and blue respectively are packaged together, thus by controlling

the brightness of three LEDs, making the RGB LED flash multiple colors.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * RGB LED Module

- 1 * 4-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

B Blue Channel

G Green Channel

R Red Channel

+ VCC

The schematic diagram:

In this experiment, we make the pin 11, 12, and 13 of the Raspberry Pi output PWM

(pulse-width modulation) signals by programming, to make the RGB LED flash different

colors.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/03_rgbLed/rgbLed.c)

Step 3: Compile

$ sudo gcc rgbLed.c -o rgbLed -lwiringPi -lpthread

2

1

3

4

R G B

2 2 0 Ω

R 1

1

2

3

4

P 1

Header

2 2 0 Ω

R 2

2 2 0 Ω

R 3

+

R

G

B

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 4: Run

$ sudo ./rgbLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/03_rgbLed.py)

Step 3: Run

$ sudo ./03_rgbLed.py

Now you can see the RGB LED flash different colors alternately.

Lesson 4 Active Buzzer

Introduction

Buzzers are a type of integrated electronic alarm devices and powered by DC supply. They

are widely applied for sound producing in devices such as computer, printer, duplicator,

alarm, electronic toy, vehicle electronic equipment, phone, and timer and so on. Active

buzzers can make sounds constantly when connected with a 5V DC supply. This Active

Buzzer module is connected to a digital pin of the Raspberry Pi. When the pin outputs

High level, the buzzer will beep; when the pin gives Low, it stays dumb.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Active Buzzer Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Input

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we make the pin 11 of the

Raspberry Pi output High and Low alternately, so the active buzzer makes sounds

accordingly.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/04_activeBuzzer/buzzer.c)

Step 3: Compile

Buzzer

1 K

R 2

1

2

3

P 1

Header

L E D

2 2 0 Ω

R 1

S

+

-

3

2

1

NPN

8 0 5 0

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

$ sudo gcc buzzer.c -o buzzer -lwiringPi

Step 4: Run

$ sudo ./buzzer

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/04_activeBuzzer.py)

Step 3: Run

$ sudo ./04_activeBuzzer.py

Now you can hear the active buzzer beeps like the sound of "Di Di".

Lesson 5 Passive Buzzer

Introduction

The difference between an active buzzer and a passive one radically lies in the

requirement for input signals. The ideal signals for active buzzers are direct currents(DC),

usually marked with VCC or VDD. Inside them there are a simple oscillation circuit that

can convert constant direct currents into pulse signal of a certain frequency, causing

magnetic fields alternation and then Mo sheet vibrating and making sounds. On the other

hand, there is no driving circuit in a passive buzzer. So the ideal signal for passive buzzer

is square wave. If DC is given, it will not respond since the magnetic field is unchanged,

the vibration plate cannot vibrate and produce sounds.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Passive Buzzer Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Input

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we make the pin 11 of the

Raspberry Pi output square waves of different frequencies alternately, thus driving the

passive buzzer to play music.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

U 1

p a s s i v e b u z z e r

1 K

R 2

1

2

3

P 1

H e a d e r

L E D

2 2 0 Ω

R 1

S

+

-

3

2

1

N P N

8 0 5 0

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/05_passiveBuzzer/passiveBuzzer.c)

Step 3: Compile

$ sudo gcc passiveBuzzer.c -o passiveBuzzer -lwiringPi -lpthread

Step 4: Run

$ sudo ./passiveBuzzer

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/05_passiveBuzzer.py)

Step 3: Run

$ sudo ./05_passiveBuzzer.py

Now you can hear the passive buzzer play music.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 6 Controlling an LED by Hall Sensor

Introduction

Hall 3144 is a Hall switch circuit. When the N pole of a magnet approaches to its print

surface, the switch outputs Low; when the N pole moves away, the switch outputs High.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Hall Sensor Module

- 1 * LED Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

In this experiment, by programming the Raspberry Pi, we detect the High or Low level of

pin 11 of the Raspberry Pi and then toggle the LED based on the output signal of the hall

sensor.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/06_hall/hall.c)

Step 3: Compile

$ sudo gcc hall.c -o hall -lwiringPi

Step 4: Run

$ sudo ./hall

For Python users:

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/06_hall.py)

Step 3: Run

$ sudo ./06_hall.py

When you place the N pole of a magnet close to or move it away from the Hall Sensor, the

state of the LED will be toggled between ON and OFF.

Lesson 7 Controlling an LED by Reed

Introduction

Reed switch is a special magnet-sensitive switch. Inside the glass tube, the reed sheets

placed in parallel with a gap between compose the normally-open contact. When a

magnet approaches the reed switch, or after the coil wrapped on the reed is electrified and

a magnet field comes into existence thus magnetizing the reed, the contact of the reed will

sense it and become the opposite pole. Due to the principle that different poles attract

each other, when the magnetic force is larger than resistance of the reed, the open

contacts (sheets) are closed; when the magnetic force decreases to a certain degree, the

resistance takes charge again and the reed will back to the original state.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Reed Module

- 1 * LED Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

In this experiment, by programming the Raspberry Pi, we detect pin 12 of the Raspberry

Pi and then toggle the LED based on the output signal of the reed switch.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/07_Reed/reed.c)

Step 3: Compile

$ sudo gcc reed.c -o reed -lwiringPi

Step 4: Run

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

$ sudo ./reed

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/07_reed.py)

Step 3: Run

$ sudo ./07_reed.py

Place the magnet near or away from the Reed Module and you will see the state of the

LED will be toggled between ON and OFF.

Lesson 8 How to Use a Relay

Introduction

The relay is an electronic and electrical component that controls large currents by small

currents. In the course of building a Raspberry Pi project, generally many large current or

high volume devices like solenoid valve, lamp and motor cannot be connected directly to

digital I/Os of the Raspberry Pi. At this moment, a relay can save your project.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Relay Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/08_relay/relay.c)

Step 3: Compile

$ sudo gcc relay.c -o relay -lwiringPi

Step 4: Run

$ sudo ./relay

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/08_relay.py)

Step 3: Run

 $ sudo ./08_relay.py

Now you can hear tick-tocks, which are the sounds of relay toggling.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 9 Laser Transmitter

Introduction

Semiconductor laser modules are widely used in laser communication, ranging, ladar,

ignition and blasting, and testing instruments.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Laser Transmitter Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Input

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we control the Laser Transmitter

Module to emit laser by pin 11 of the Raspberry Pi.

Note: DO NOT look directly into the laser!

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/09_Laser/laser.c)

Step 3: Compile

$ sudo gcc laser.c -o laser -lwiringPi

1

2

3

P 1

Header

-

+

S

2 2 0 Ω

R 1

Res

L E D

V C C

G N D

V C C

8 0 5 0

NPN

1 K

R 2

G N D

V C C

G N D

1

2

U 1 Laser Emit

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 4: Run

 $ sudo ./laser

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/09_laser.py)

Step 3: Run

$ sudo ./09_laser.py

Now you can see the Laser Transmitter Module emit laser and the emission lasts for 1

seconds, and then it stops. After 1s, the cycle repeats.

Lesson 10 Laser Receiver

Introduction

The principle for many laser receiving devices is the same. The laser ray goes through the

optical lens and then is received by the photosensitive device, i.e. the photodiode. After

receiving the rays, the photodiode will generate currents accordingly (based on the light

intensity) which then output electrical signal after running through the amplifier. Then

use an I/O port of the Raspberry Pi to detect the output terminal of the Laser Receiver

module, and thus we can tell whether there are rays shone on the module.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Laser Transmitter Module

- 1 * Laser Receiver Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

In this experiment, we use the Laser Receiver module to detect whether there is laser ray

shining on the module. If yes, the output pin (S) of the module will output Low.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/10_LaserRecv/laserRecv.c)

Step 3: Compile

$ sudo gcc laserRecv.c -o laserRecv -lwiringPi

Step 4: Run

$ sudo ./laserRecv

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/10_laserRecv.py)

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Run

$ sudo ./10_laserRecv.py

Make the Laser Transmitter module to shoot laser ray onto the Laser Receiver module.

Then "Laser received…" will be displayed on the terminal. Remove the transmitter

module and "Laser not received" will be shown.

Lesson 11 How to Control a DC Motor

Introduction

DC motor is a device that converts electrical energy into mechanical energy. Due to the

ease of control, it is usually used in fan, electronic toy, shaver, etc.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * DC Motor Module

- 1 * 4-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

B Iutput

A Iutput

+ VCC

- GND

This experiment is to control the status of the DC motor via the Raspberry Pi. The statuses

include forward, stop and reverse.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/11_motor/motor.c)

Step 3: Compile

$ sudo gcc motor.c -o motor -lwiringPi

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 4: Run

 $ sudo ./motor

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/11_motor.py)

Step 3: Run

$ sudo ./11_motor.py

Now you can see the fan rotates forward, stop, reverse.

Lesson 12 Controlling an LED by Limit Switch

Introduction

Limit Switch, or travel switch, can be installed on relatively stationary objects such as

mounting bracket and door frame, or moving objects like car and door. When the moving

object approaches the stationary one, the switch is closed; when the moving one moves

away from the static one, the switch is open.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Limit Switch Module

- 1 * LED Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we detect the status of the Limit

Switch module through pin 12 of the Raspberry Pi and then toggle the LED based on the

output signal of the limit switch.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/12_limitSwitch/limitSwitch.c)

C

1

N

O

2

N

C

3

S 1

Crash

LED_P

2 2 0 Ω

R 1

1

2

3

P 1

Header

V C C

G N D

G N D

V C C

V C C

LED_D

1 K

R 2

G N D

S

+

-

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Compile

$ sudo gcc limitSwitch.c -o limitSwitch -lwiringPi

Step 4: Run

$ sudo ./limitSwitch

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/12_limitSwitch.py)

Step 3: Run

$ sudo ./12_limitSwitch.py

Press the Limit Switch and you can see that the state of the LED will be toggled between

ON and OFF.

Lesson 13 Controlling an LED by Vibration Switch

Introduction

The vibration digital input module can sense weak vibration signals, thus it can be used

for related interaction projects. The core sensor is SW-540, a spring component of no-

directional vibration sensing which can be triggered at any angle. The module stays off at

any angle when it's still. But when it's hit or knocked by external force, the distorted

spring contacts and connects the electrode in the middle thus connecting the two pins and

turning the sensor on. When the force disappears, the circuit is back to off.

This sensor module is suitable for small-current vibration detection circuits and has been

widely used in products such as toys, light shoes, burglar alarms, electronic scales, flash

dance shoes, hot wheels, flash balls, etc.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Vibration Sensor Module

- 1 * LED Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

The schematic diagram:

This experiment is to make the LED that connected to the pin 11 of Raspberry Pi flicker

with the actions of the Vibration Sensor module.

Experimental Procedures

Step 1: Build the circuit

1

2

S 1

SW_540

2 2 0 Ω

R 1

L E D

G N D

V C C

5 1 0 K

R 2

1

2

3

P 1

V C C

V C C

G N D

G N D

-

+

S

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/13_vibration/vibration.c)

Step 3: Compile

$ sudo gcc vibration.c -o vibration -lwiringPi

Step 4: Run

$ sudo ./vibration

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/13_vibration.py)

Step 3: Run

$ sudo ./13_vibration.py

Knock or tap the Vibration Sensor module and you'll see the status of LED will be toggled.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 14 Rotary Encoder

Introduction

Rotary encoder switch, or small rotary encoder, is a switch electronic component that has

a set of regular and strictly-sequenced pulses. The module supports functions such as

increase, decrease, turn pages, etc., by collaboration with a microcontroller. For example,

in daily life you can see page turning of the mouse, menu selection, volume adjustment of

speakers, temperature adjustment of toaster, frequency adjustment of medical equipment,

etc.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Rotary Encoder Module

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

B Output

A Output

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we change a value by reading the

status of the Rotary Encoder. When we turn the knob of the Rotary Encoder clockwise,

the value on the terminal will increase; when we turn the knob counterclockwise, the

value will decrease. When we press down the switch, the value will be zeroed out.

Experimental Procedures

Step 1: Build the circuit

1

2

3

4

5

P 1

A

1

B

2

C

3

SW+

4

SW-

5

E 1

Rotary Encoder

1 0 K

R 1

1 0 K

R 2

2 2 0 Ω

R 3

D 1

L E D

+

A

B

S

-

V C C

V C C V C C

V C C

V C C

1 0 K

R 4

G N D

G N D

G N D

G N D

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/14_RotaryEncoder/rotaryEncoder.c)

Step 3: Compile

$ sudo gcc rotaryEncoder.c -o rotaryEncoder -lwiringPi

Step 4: Run

$ sudo ./rotaryEncoder

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/14_rotaryEncoder.py)

Step 3: Run

$ sudo ./rotaryEncoder.py

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Now rotate the shaft of the rotary encoder, and the value printed on the screen will

change. Rotate the rotary encoder clockwise, the value will increase; Rotate it

counterclockwise, the value will decrease; Press the rotary encoder, the value will be reset

to 0.

Lesson 15 Controlling an LED by Touch Button

Introduction

The Touch Button Module is a touch switch module developed based on the principle of

capacitive sensing. Touch of human or metal onto the gilded touch surface can be sensed.

Besides, it can also detect other such touch with certain materials like plastic and glass

between. The sensitivity in these cases depends on the touched area and thickness of the

material between the touch pad and human or metal. The module can be conveniently

used to replace physical buttons.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Touch Button Module

- 1 * LED Module

- 2 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we detect the High or Low of the

output terminal of the Touch Button Module by pin 12 of the Raspberry Pi, so as to tell

whether fingers touched the touch button or not.

Experimental Procedures

Step 1: Build the circuit

O U T

1

G N D

2

I N

3

A H L B

4

V C C

5

T O G

6

U 1

TTP223

L E D

2 2 p F

Cup

1 K

R 1

2 2 0 Ω

R 2

1

B 1

touch button

1

2

3

P 1

Header

G N D

G N D

G N D G N D

G N D

V C C

V C C

Data

Data

-

+

S

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/15_touchBtn/touchBtn.c)

Step 3: Compile

$ sudo gcc touchBtn.c -o touchBtn -lwiringPi

Step 4: Run

$ sudo ./touchBtn

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/15_touchBtn.py)

Step 3: Run

$ sudo python 15_touchBtn.py

Touch the Touch Button Module, and you can see the LED toggle between on and off.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 16 Movement Detection Based on PIR

Introduction

The PIR (passive Infrared) sensor can detect the Infrared rays emitted by human or

animals and then output On/Off signals. Traditional pyroelectric PIR sensor needs

pyroelectric Infrared probe, special chip and complex circuits to make the effect. In this

case, the sensor is a large one with complicated circuits and comparatively less credible.

But this Infrared pyroelectric motion sensor adopts the digital integration of the probe, so

it boasts high credibility, low power consumption and simple outside circuit with a small

size. It can be applied to any cases in detecting moving human or animals.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * PIR Sensor Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

3.3V 3.3V

- GND

The schematic diagram:

This experiment is to use the PIR Sensor Module to detect whether there is any human

activity.

Experimental Procedures

Step 1: Build the circuit

1

2

3

P 1

3.3V

G N D

-

3 . 3 V

1 K

R 1

Res

D 1

3.3V

G N D

V D D

1

R

E

L

2

VSS

3

U 1

PIR AS312

G N D

3.3V

G N D

D 2

2 2 0 Ω

R 2

Res

S

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/16_PIR/pir.c)

Step 3: Compile

$ sudo gcc pir.c -o pir -lwiringPi

Step 4: Run

$ sudo ./pir

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/16_PIR.py)

Step 3: Run

$ sudo python 16_PIR.py

When the PIR module detects human movement, " Someone invasion !!!" will be

displayed on the terminal.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 17 Flame Sensor

Introduction

The Flame Sensor detects flames by the special infrared receiver to capture the infrared

rays of a specific wavelength in the flames. It supports a detection angle of as high as 60

degrees and works within -25 - 85℃. When in use, you need to pay attention and do not

place the probe of the sensor too close to the flames in case of damages. Besides, the sensor

can be used to detect light intensity. It can detect a light source with a wavelength of 760

- 1100nm. Pin A outputs the analog data collected by the sensor. You can adjust the

potentiometer on the module to set the alarm threshold of the sensor. So when the value

reaches the threshold, pin S will switch between High and Low.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * Flame Sensor Moule

- 1 * 3-Pin Wires

- 1 * 4-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Digital Output

A Analog Output

+ VCC

- GND

In this experiment, by programming the Raspberry Pi, we detects whether a flame has

been encountered.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/17_flame/flame.c)

Step 3: Compile

$ sudo gcc flame.c -o flame -lwiringPi

Step 4: Run

$ sudo ./flame

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/17_flame.py)

Step 3: Run

$ sudo python 17_flame.py

Then you'll see the data detected by the Flame Sensor module on the terminal. The data

includes two parts: " Fire detected or not !!! " and "Flame intensity".

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 18 Line Finder

Introduction

The Line Finder Module applies the principle that infrared rays reflect differently on

surfaces of different colors. After electrified, the infrared diode on the module sends out

infrared rays constantly. When they encounter a white surface, the diffused reflection

happens and the reflected rays are received by the receiver on the module. On the other

hand, when they come across a black one, the receiver cannot get any infrared.

Thus, the processor can tell whether it is a white or black detected surface by receiving

the reflected infrared rays or not. Based on this, the module is usually used in line finding

on a smart car.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Line Finder Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Output

+ VCC

- GND

In this experiment, we detect a piece of white and another of black paper via the Line

Finder Module.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/18_tracking/tracking.c)

Step 3: Compile

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

$ sudo gcc tracking.c -o tracking -lwiringPi

Step 4: Run

$ sudo ./tracking

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/18_ tracking.py)

Step 3: Run

$ sudo python 18_tracking.py

Place the sensor module over a piece of white paper and another of black and you will see

the data detected on the terminal. You can adjust the blue potentiometer on the module

to change the sensitivity.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 19 Measuring the Temperature via DS18B20

Introduction

DS18B20 is a single-bus digital temperature sensor of high-precision. The measurement

range is－55℃ - ＋125℃ and inherent temperature resolution is 0.5℃. The sensor

support multi-point network and multi-point temperature measurement – the measured

result is sent to the controller via serial port in the format of a 9-12-bit number. This

digital sensor can be applied to various microcontrollers. It's simpler on Raspberry Pi.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * DS18B20 Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Data

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we read the temperature value

collected by the DS18B20 module through pin 7 of the Raspberry Pi, and display it on the

terminal.

Experimental Procedures

Step 1: Build the circuit

G N D

1

D Q

2

V C C

3

D 3

D S 1 8 B 2 0

1

2

3

P 1

H e a d e r

S

+

-

2 2 0 Ω

R 1

D 1

L E D

V C C

G N D

1 0 K

R 3

1 K Ω

R 2

D 2

L E D

V C C

V C C

V C C

G N D

V C C

G N D

Step 2: Upgrade Raspberry Pi OS kernel

$ sudo apt-get update

$ sudo apt-get upgrade

Step 3: Modify the configuration files

$ sudo vim /boot/config.txt

Then scroll to the bottom and type:

dtoverlay=w1-gpio

Then reboot Raspberry Pi

$ sudo reboot

Mount the device drivers and confirm whether the device is effective or not

$ sudo modprobe w1-gpio

$ sudo modprobe w1-therm

$ cd /sys/bus/w1/devices/

$ ls

The result is as follows:

root@rasberrypi:/sys/bus/w1/devices# ls

28-00000355d573 w1_bus_master1

28-00000355d573 is an external temperature sensor device, but it may vary with every

client. It is the serial number of your DS18b20.

Step 4: Check the current temperature

$ cd 28-00000355d573

$ ls

The result is as follows:

root@rasberrypi:/sys/bus/w1/devices/28-00000355d573# ls

driver id name power subsystem uevent w1_slave

$ cat w1_slave

The result is as follows:

root@raspberrypi:/sys/bus/w1_slave/28-00000495db35# cat w1_slave

a3 01 4b 46 7f ff 0d 10 ce : crc=ce YES

a3 01 4b 46 7f ff 0d 10 ce t=28154

The second line t=28154 is current temperature value. If you want to convert it to degree

Celsius, you can divide by 1000, that is, the current temperature is 28154/1000=28.154 ℃.

For C language users:

Step 5: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/19_ds18b20/ds18b20_2.c.c)

Step 6: Compile

$ sudo gcc ds18b20_2.c -o ds18b20 -lwiringPi

Step 7: Run

$ sudo ./ds18b20

For Python users:

Step 5: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/19_ds18b20.py)

Step 6: Run

$ sudo python 19_ds18b20.py

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Now, you can see the current temperature is printed on the terminal.

Lesson 20 Temperature & Humidity Sensor - DHT-11

Introduction

DHT11 is a composite digital thermal sensor that integrates temperature and humidity

detection. It can convert the temperature and humidity analog values into digital values

via corresponding sensitive components and built-in circuits, which can be directly read

by computer or other data collecting devices.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * DHT-11 Sensor Module

- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Digital output

+ VCC

- GND

In this experiment, by programming the Raspberry Pi, we read the temperature and

humidity data collected by the DHT11 module by pin 11 of the Raspberry Pi and display

it on the terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/20_dht11/dht11.c)

Step 3: Compile

$ sudo gcc dht11.c -o dht11 -lwiringPi

Step 4: Run

$ sudo ./dht11

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/20_dht11.py)

Step 3: Run

$ sudo python 20_dht11.py

Now, you will see the data of current temperature and humidity displayed on the terminal.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 21 Measuring the Distance

Introduction

Ultrasonic Distance Sensor module supports a contactless detection within a distance of

2cm-400cm. It contains an ultrasonic emitter, receiver and control circuits.

Notes:

1. The module is not suggested to connect wires when power is on. If you have to do so,

please first connect the GND and then other pins; otherwise, the module may not work.

2. During the ranging, the area of the targeted object should be no less than 0.5cm and the

surface facing the module should be as flat as possible; otherwise the result may be

inaccurate.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Ultrasonic Sensor Module

- 4 * Jumper Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

Trig Iutput

Echo Output

Vcc VCC

GND GND

This experiment uses the Ultrasonic Distance Sensor module to detect the distance

between the obstacle and module and show the data sensed on the terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/21_ultrasonicSensor/distance.c)

Step 3: Compile

$ sudo gcc distance.c -o distance -lwiringPi

Step 4: Run

$ sudo ./distance

For Python users:

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/21_distance.py)

Step 3: Run

$ sudo python 21_distance.py

Now, you will see the distance to the obstacle at front of the Ultrasonic Distance Sensor

module displayed on the terminal.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 22 Acceleration Sensor - ADXL345

Introduction

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with high resolution

(13-bit) measurement at up to ±16g. Digital output data is formatted as 16-bit twos

complement and is accessible through either a SPI (3-wire or 4-wire) or I2C digital

interface. The ADXL345 is well suited for mobile device applications. It measures the

static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration

resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables measurement of

inclination changes less than 1.0°.

Low power modes enable intelligent motion-based power management with threshold

sensing and active acceleration measurement at extremely low power dissipation.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADXL345 Accelerometer Module

- Several jumper wires

Experimental Principle

The Fritzing image:

The Physical picture:

In this lesson, we will learn how to use an acceleration sensor ADXL345 to get the

acceleration data.

Experimental Procedures

Step 1: Build the circuit

NOTE:

The following program uses an I2C interface. Before running the program, please make

sure the I2C driver module of Raspberry Pi has loaded normally.

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/22_ADXL345/adxl345.c)

Step 3: Compile

$ gcc adxl345.c -o adxl345 -lwiringPi

Step 4: Run

$ sudo ./adxl345

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/22_ADXL345.py)

Step 3: Run

$ sudo python 22_ADXL345.py

Now you should see the acceleration data displayed on the terminal.

Lesson 23 Barometric Sensor - BMP180

Introduction

The BMP180 is the new digital barometric pressure sensor, with a very high performance,

which enables applications in advanced mobile devices, such as smart phones, tablet PCs

and sports devices. It follows the BMP085 and brings many improvements, like the

smaller size and the expansion of digital interfaces.

The ultra-low power consumption down to 3uA makes the BMP180 the leader in power

saving for your mobile devices. BMP180 is also distinguished by its very stable

behavior(performance) with regard to the independency of the supply voltage.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * BMP180 Module

- 1 * 4-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

In this lesson, we will learn how to use an pressure sensor BMP180 to get the atmospheric

pressure and altitude data.

Experimental Procedures

Step 1: Build the circuit

NOTE:

The following program uses an I2C interface. Before running the program, please make

sure the I2C driver module of Raspberry Pi has loaded normally.

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/23_bmp180/bmp180dev3.c)

Step 3: Compile

$ gcc bmp180dev3.c -o bmp180 -lm

Step 4: Run

$ sudo ./bmp180

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/23_bmp180/examples/simpletest.py)

Step 3: Run

$ sudo python simpletest.py

Now you should see the atmospheric pressure and altitude data displayed on the terminal.

Lesson 24 Dot-matrix Display

Introduction

The module drives the 8*8 LED Matrix by cascading two 74HC595 chips. The module

communicates with the microcontroller through SPI(Serial Peripheral Interface). It only

occupies three I/Os of the Raspberry Pi and save precious ones for connecting other

devices.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * 8*8 LED Matrix Module

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

DS Input

SH_CP Input

ST_CP Input

+ VCC

- GND

In this experiment, by programming the Raspberry Pi, we send the data to the dot matrix

module via the SPI interface and make the display scroll the characters “Adeept”.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/24_ledMatrix/ledMatrix.c)

Step 3: Compile

$ sudo gcc ledMatrix.c -o ledMatrix -lwiringPi

Step 4: Run

$ sudo ./ledMatrix

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/24_LedMatrix.py)

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Run

$ sudo python 24_LedMatrix.py

Now you can see on the dot matrix module, “Adeept” is displayed in the way of scrolling.

Lesson 25 LED Bar Graph

Introduction

The LED bar is an analog indicating component usually used for volume indication.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * LED Bar Module

- 1 * 4-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

DI Data In

DCLK Clock

+ VCC

- GND

The experiment is to control the number of LEDs brightened on the LED bar graph by

programming the Raspberry Pi.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/25_ledBar/ledBar.c)

Step 3: Compile

$ sudo gcc ledBar.c -o ledBar -lwiringPi -lm

Step 4: Run

$ sudo ./ledBar

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/25_ledBar.py)

Step 3: Run

$ sudo python 25_ledBar.py

Now you can see the LEDs on the LED Bar Graph module light up and dim one by one

repeatedly.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 26 How to Drive the Segment Display

Introduction

The module consists of a 4-digit 7-segment common-cathode (CC) diode and a chip

TM1638. It communicates with the Raspberry Pi via three wires and can show numbers

and simple characters.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Segment Display Module

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

STB Chip Select

CLK Clock

DIO Data

+ VCC

- GND

Through programming the Raspberry Pi, make the module display 0000~9999.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/26_segmentDisplay/segment.c)

Step 3: Compile

$ sudo gcc segment.c -o segment -lwiringPi

Step 4: Run

$ sudo ./segment

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/26_segment.py)

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Run

$ sudo python 26_segment.py

Now you can see the number 0~9999 shown repeatedly on the digital display.

Lesson 27 Potentiometer

Introduction

Potentiometer is a resistor whose resistance can be adjusted continuously. When its shaft

is turned, the moving contact (or wiper) slides along the resistor.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * Potentiometer Module

- 1 * Slide Potentiometer Module

- 2 * 3-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

A Analog Output

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we collect the analog values output

by the Potentiometer module through pin CH0 of the ADC0832, convert it to digital

values and display them on the terminal.

Experimental Procedures

Step 1: Build the circuit

1

2

3

P 1

Header

V C C

G N D

-

+

A

1 0 K

R 1

RPot

V C C

G N D

2 2 0 Ω

R 2

L E D

V C C

G N D

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/27_potentiometer/potentiometer.c)

Step 3: Compile

$ sudo gcc potentiometer.c -o potentiometer -lwiringPi

Step 4: Run

$ sudo ./potentiometer

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/27_potentiometer.py)

Step 3: Run

$ sudo python 27_potentiometer.py

Turn the knob on the Potentiometer module, you will find that the value displayed on the

terminal is changed.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 28 Photoresistor

Introduction

The photoresistor module is a resistor module designed based on the principle of

photoconductive effect of semiconductors, of which the resistance varies with the

intensity of incident light. The resistance of the photoresistor we use decreases with

stronger incident light and increases with weaker light. In experiments and daily light,

photoresistors are usually used for detecting light intensity.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * Photoresistor Module

- 2 * 3-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

A Analog Output

+ VCC

- GND

The schematic diagram:

This experiment is to collect the data of light intensity by the Photoresistor module and

then display it on the terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/28_photoresistor/photoresistor.c)

R 2 Photoresistor

1

2

3

P 1

Header

1 0 KR 1

A

+

-

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Compile

$ sudo gcc photoresistor.c -o photoresistor -lwiringPi

Step 4: Run

$ sudo ./photoresistor

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/28_photoresistor.py)

Step 3: Run

$ sudo python 28_photoresistor.py

Now, when you try to cover to the photoresistor, you will find that the value displayed on

the screen decreasing. On the contrary, when you shine the photoresistor with strong

light, the value displayed will increase.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 29 Thermistor

Introduction

Thermistors can be divided into two types by temperature coefficient: positive

temperature coefficient (PTC) and negative temperature coefficient (NTC). The typical

feature of a thermistor is sensitive to temperature – its resistance varies with ambient

temperature changes. For PTC thermistor, when the temperature gets high, its resistance

increases; for NTC thermistor, the case is the opposite. The thermistor we use is an NTC

one.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * Thermistor Module

- 2 * 3-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

A Analog Output

+ VCC

- GND

The schematic diagram:

In this experiment, by programming the Raspberry Pi, we collect the analog values output

by the Thermistor module through CH0 of the ADC0832, change it to digital values and

display them on terminal.

Experimental Procedures

Step 1: Build the circuit

1

2

3

P 1

Header1 0 K

R 1

A

+

-

L E D

2 2 0 Ω

R 2

G N D

V C C

V C C

G N D

V C C

G N D

R T

Thermistor

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/29_thermistor/thermistor.c)

Step 3: Compile

$ sudo gcc thermistor.c -o thermistor -lwiringPi

Step 4: Run

$ sudo ./thermistor

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/29_thermistor.py)

Step 3: Run

$ sudo python 29_thermistor.py

Now, touch the thermistor, and you can see the value displayed on the screen, which

changes accordingly.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 30 Water Level Detection

Introduction

The module is a simple water level sensor. It measures the water volume by the printed

wires exposed to the air on the module. The more water on the surface, more wires

connected. Thus, the area of electrified wires gets larger, so the output voltage will

increase. The surface of the sensor is gilded to prolong its life.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Water Level Module

- 1 * LM393 CM(Comparator) Module

- 1 * ADC0832 Module

- 1 * 2-Pin Wires

- 1 * 3-Pin Wires

- 1 * 4-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing images:

The Physical picture:

This experiment collects the data of water level by the Water Level Sensor module and

displays it on the terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/30_waterLevel/waterLevel.c)

Step 3: Compile

$ sudo gcc waterLevel.c -o waterLevel -lwiringPi

Step 4: Run

$ sudo ./waterLevel

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/30_waterLevel.py)

Step 3: Run

$ sudo python 30_waterLevel.py

Take a bottle with some water. Place the Water Level Sensor module in the water at end

and add water into the bottle. You will see the value of water level displayed on the

terminal and changes as you add water.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 31 Soil Moisture Detection

Introduction

The Soil Moisture Sensor module is a simple sensor that measures the soil moisture. When

the soil moisture is insufficient, the output value of the sensor will decrease; on the other

hand, the value will increase when there’s enough water. The surface of the sensor is

gilded to prolong its life.

The CM Module consists of a comparator LM393 and extremely simple external circuits.

When using the module, you can set a threshold via the blue potentiometer beforehand.

When the input analog value reaches the threshold, the digital pin S will output a Low

level.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * Soil Moisture Sensor Module

- 1 * LM393 CM Module

- 1 * ADC0832 Module

- 1 * 2-Pin Wires

- 1 * 3-Pin Wires

- 1 * 4-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing images:

The Physical picture:

The experiment uses the Soil Moisture Sensor module to collect data of soil moisture and

display it on terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/31_soilMoisture/soilMoisture.c)

Step 3: Compile

$ sudo gcc soilMoisture.c -o soilMoisture -lwiringPi

Step 4: Run

$ sudo ./soilMoisture

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/31_soilMoisture.py)

Step 3: Run

$ sudo python 31_soilMoisture.py

Plug the sensor into the soil, you will see the value of soil moisture collected by the

module displayed on the terminal.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 32 MQ-2 Gas Sensor

Introduction

MQ-2 is a sensor that can detect flammable gases such as methane, hydrogen, and propane

and so on. It adopts the low conductivity stannic oxide for the basic material. When there

are flammable gases in the ambient environment, the conductivity of the sensor will

increase as the gases become denser. This type can detect a wide range of gases thus

making it a low cost multifunctional sensor. The sensor can be used for methane leak

alarm and automatic smoke exhaust fan. With the features, it boasts a perfect sensor for

indoor air regulation that meets the environmental standards.

Notes:

1. This sensor is equipped with an adjustment potentiometer for the alarm threshold.

Spin the knob of the pot clockwise, and the threshold will be increased; spin it

counterclockwise, the threshold will be reduced.

2. The sensor may not output a steady and accurate data immediately; it needs to be

preheated for about 1 minute to collect data steadily.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * MQ-2 Gas Sensor Module

- 1 * 3-Pin Wires

- 1 * 4-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Digital Output

A Analog Output

+ VCC

- GND

In this experiment, by programming the Raspberry Pi, we read the analog values collected

by the MQ-2 Gas Sensor and display them on the terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/32_MQ-2/mq-2.c)

Step 3: Compile

$ sudo gcc mq-2.c -o mq-2 -lwiringPi

Step 4: Run

$ sudo ./mq-2

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/32_mq-2.py)

Step 3: Run

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

$ sudo python 32_mq-2.py

Release some methane near the module, and you will see the corresponding message on

the terminal indicating flammable gases. Also the value output by the analog pin of the

module will be printed.

Lesson 33 Sound Sensor

Introduction

The MIC Module is composed of a small microphone and an LM393 voltage comparator.

It can capture minor sound signals and convert them into electric ones. The threshold of

the comparator can be adjusted by the blue potentiometer on the module. This module

can be applied in sound alarm system.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * MIC Module

- 1 * ADC0832 Module

- 1 * 3-Pin Wires

- 1 * 4-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

S Digital Output

A Analog Output

+ VCC

- GND

This experiment uses the MIC Module to detect the sound and display the data on the

terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/33_mic/mic.c)

Step 3: Compile

$ sudo gcc mic.c -o mic -lwiringPi

Step 4: Run

$ sudo ./mic

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/33_mic.py)

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Run

$ sudo python 33_mic.py

Blow at the MIC Module or make some other sounds near it, and you can see the value on

the terminal indicating the sound intensity. The higher the sound volume, the larger

value on the terminal; the lower volume, the smaller value.

Lesson 34 PS2 Joystick

Introduction

The PS2 Joystick Module is an input device. It consists of a station and the control knob

onside. It functions by sending angle or direction signals to the device controlled. The

button on the module can also be recognized by the microcontroller. The module supports

two-channel analog output, namely, x- and y-axis offset, and one-channel digital output

which indicates whether the user has pressed the button at z-axis or not. The Joystick

Module can be used to easily control the object to move in a three-dimensional space. For

example, it can be applied to control crane, truck, electronic games, robots, etc.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * PS2 Joystick Module

- 1 * ADC0832 Module

- 1 * 3-Pin Wires

- 2 * 5-Pin Wires

Experimental Principle

The Fritzing image:

The Physical picture:

Pin definition:

z Switch Output

x Analog Output(X)

y Analog Output(Y)

+ VCC

- GND

The experiment reads the status of the PS2 Joystick Module, then send the data to and

display it on the terminal.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/34_PS2Joystick/joystick.c)

Step 3: Compile

$ sudo gcc joystick.c -o joystick -lwiringPi

Step 4: Run

$ sudo ./joystick

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/34_PS2Joystick.py)

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Run

$ sudo python 34_PS2Joystick.py

Press or pull the knob and you will see the value of current status displayed on the

terminal.

Lesson 35 LCD1602 Display

Introduction

LCD1602:

1602 crystal, or 1602 character crystal, is a dot-matrix crystal display module used

specially to display letters, numbers, symbol, etc. It's composed of several dot-matrix

character bits, each of which can display one character. The character bits are separated

by one dot pitch and there's a gap between each line. Therefore, characters are spaced

within and between lines.

The name 1602 LCD indicates that the display is 16x2, that is, two lines with 16 characters

in each.

PCF8574-based I2C Interface Module:

Since there are limited I/O ports on the Raspberry Pi, if you use them to drive the

LCD1602, it needs many of the ports and there may be insufficient to connect other

devices. To solve this problem, an IIC (or I2C) Interface Module based on PCF8574 is

designed to extend the I/O ports of the Raspberry Pi. You only need two wires (SDA and

SCL) to control the LCD1602 and save many ports for the board to connect more sensors.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * LCD1602

- 1 * Potentiometer Module

- 1 * I2C Interface Module

- 1 * 3-Pin Wires

- 1 * 4-Pin Wires

- Several Jumper Wires

Experimental Principle

The Fritzing image:

The Physical picture:

This lesson contains two experiments. The first experiment is controlling LCD1602

directly by the Raspberry Pi's GPIO, the second experiment is controlling via PCF8574-

based IIC module.

Experiment 1:

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/35_LCD1602/lcd1602.c)

Step 3: Compile

$ sudo gcc lcd1602.c -o lcd1602 -lwiringPi -lwiringPiDev

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 4: Run

$ sudo ./lcd1602

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/35_LCD1602/lcd1602.py)

Step 3: Run

$ sudo python lcd1602.py

Experiment 2:

Procedures

Step 1: Build the circuit

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 2: The I2C of the Raspberry Pi is not turned on by default, we can use raspi-config to

enable it

$ sudo raspi-config

 Use the down arrow to select 5 Interfacing Options

 Arrow down to P5 I2C

Select yes when it asks you to enable I2C.

Also select yes when it tasks about automatically loading the kernel module.

Use the right arrow to select the <Finish> button.

Select yes when it asks to reboot.

The system will reboot. when it comes back up, log in and enter the following

command:

$ ls /dev/*i2c*

The Pi should respond with

/dev/i2c-1

Which represents the user-mode I2C interface.

For C language users:

Step 3: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/35_LCD1602/i2c_lcd1602.c)

Step 4: Compile

$ sudo gcc i2c_lcd1602.c -o i2c_lcd1602 -lwiringPi -lwiringPiDev

Step 5: Run

$ sudo ./i2c_lcd1602

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

For Python users:

Step 3: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/35_LCD1602/i2c_lcd1602.py)

Step 4: Run

$ sudo python i2c_lcd1602.py

NOTE:

If characters are not displayed on the LCD, try to turn the potentiometer(a blue knob) for

contrast adjustment on the I2C Interface Module. Or, you can toggle the switch on the

module to see whether the backlight is on.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 36 How to Make a Simple Thermometer(1)

Introduction

In this lesson, we will learn how to make a simple thermometer based on DS18b20 and

segment display module.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * DS18b20 Module

- 1 * Segment Display Module

- 1 * 5-Pin Wires

- 1 * 3-Pin Wires

Experimental Principle

In this experiment, we program the Raspberry Pi to read DS18b20 temperature sensor,

and then display the temperature on the segment display module.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/36_thermometer_1)

Step 3: Compile

$ sudo ./build.sh

Step 4: Run

$ sudo ./main

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/36_thermometer_1/)

Step 3: Run

 $ sudo python main.py

Now you can see the temperature shown on the segment display.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 37 How to Make a Simple Thermometer(2)

Introduction

In this lesson, we will learn how to make a simple thermometer based on DS18b20 and

LCD1602.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * DS18b20 Module

- 1 * I2C Interface Module

- 1 * LCD1602

- 1 * 4-Pin Wires

- 1 * 3-Pin Wires

Experimental Principle

In this experiment, we program the Raspberry Pi to read DS18b20 temperature sensor,

and then display the temperature on the LCD1602.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/37_thermometer_2)

Step 3: Compile

$ sudo ./build.sh

Step 4: Run

$ sudo ./main

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/37_thermometer_2)

Step 3: Run

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

$ sudo python main.py

Now you can see the temperature shown on the LCD1602.

Lesson 38 Make a Distance Measuring Device

Introduction

In this lesson, we will learn how to make a distance measuring device based on ultrasonic

module and LCD1602.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * LCD1602

- 1 * I2C Interface Module

- 1 * Ultrasonic Sensor Module

- 1 * 4-Pin Wires

- 4 * Jumper Wires

Experimental Principle

In this experiment, we program the Raspberry Pi to detect the distance between the

obstacle and ultrasonic module, and then display the data on the LCD1602.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/38_measureDis)

Step 3: Compile

$ sudo ./build.sh

Step 4: Run

$ sudo ./main

For Python users:

Step 2: Edit and save the code with vim or nano.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/38_measureDis/)

Step 3: Run

$ sudo python main.py

Now, you will see the distance to the obstacle at front of the Ultrasonic Distance Sensor

module displayed on the LCD1602.

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Lesson 39 How to Make a Simple Voltmeter(1)

Introduction

In this lesson, we will learn how to make a simple voltmeter based on ADC0832 and

segment display module.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * Segment Display Module

- 1 * Slide Potentiometer Module

- 2 * 5-Pin Wires

- 2 * 3-Pin Wires

Experimental Principle

In this experiment, we program the Raspberry Pi to read voltage(DC: 0-5V) via ADC0832,

and then display the voltage value on the segment display module.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/39_voltmeter_1)

Step 3: Compile

$ sudo ./build.sh

Step 4: Run

$ sudo ./main

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/39_voltmeter_1)

Step 3: Run

$ sudo python main.py

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Now you can see the voltage value shown on the segment display.

Lesson 40 How to Make a Simple Voltmeter(2)

Introduction

In this lesson, we will learn how to make a simple voltmeter based on ADC0832 and

LCD1602.

Components

- 1 * Raspberry Pi

- 1 * GPIO Extension Board

- 1 * 40-Pin GPIO Cable

- 1 * Breadboard

- 1 * ADC0832 Module

- 1 * I2C Interface Module

- 1 * Slide Potentiometer Module

- 1 * LCD1602

- 2 * 3-Pin Wires

- 1 * 4-Pin Wires

- 1 * 5-Pin Wires

Experimental Principle

In this experiment, we program the Raspberry Pi to read voltage(DC0-5V) via ADC0832,

and then display the voltage value on the LCD1602.

Experimental Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_C_Code/40_voltmeter_2)

Step 3: Compile

$ sudo ./build.sh

Step 4: Run

$ sudo ./main

For Python users:

Step 2: Edit and save the code with vim or nano.

(code path: /home/Adeept_Sensor_Kit_for_RPi_Python_Code/40_voltmeter_2)

https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code
https://github.com/adeept/Adeept_Sensor_Kit_for_RPi_C_Code

Step 3: Run

$ sudo python main.py

Now you can see the voltage value shown on the LCD1602.

