
support@adeept.com

1

Lesson 19 Self-balancing

19.1 Overview

The self-balancing is developed based on the MPU6050 sensor. Once the self balancing function

is enabled, it strives to ensure that the perspective of the robot camera remains horizontal. When

this function is running normally, the robot is restricted from performing other operations. To

disable this feature, simply click on the relevant option again.

19.2 Introduction to Self-balancing

The self-balancing utilizes the data from the MPU6050 sensor to detect the orientation and

movement of the robot. By continuously monitoring the sensor readings, it can adjust the

camera's position to maintain a horizontal view. This is achieved through a series of algorithms

that calculate the necessary adjustments based on the detected tilt angles. The MPU6050

provides accurate acceleration and gyroscope data, which serves as the foundation for the self -

balancing and camera - stabilization mechanisms. This ensures that regardless of the robot's

movement or orientation changes, the camera's line of sight remains parallel to the horizon,

offering a consistent and stable visual output.

19.3 Running the Self-balancing Function

Running the Automatic Obstacle Avoidance program

1. Start the Adeept_DarkPaw Robot. It may take about 30-50s to boot.

2. After Adeept_DarkPaw is turned on, open the Chrome browser on your mobile or computer,

enter the IP address of your Raspberry Pi and access port ":5000" into the IP address bar, like this:

192.168.3.31:5000. The web controller will then be displayed on the browser.

mailto:support@adeept.com


support@adeept.com

2

3. After clicking "STEADY", The Adeept_DarkPaw camera will remain level.

4. Click "STEADY" again to disable the function.

19.4 Code

The main code is as follows. For the complete code, please check SpiderG.py.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

def steady():
global sensor
if steadyMode:

if MPU_connection:
try:

accelerometer_data = sensor.get_accel_data()
X = accelerometer_data['x']
X = kalman_filter_X.kalman(X)
Y = accelerometer_data['y']
Y = kalman_filter_Y.kalman(Y)

X_error = X-X_steady
Y_error = Y-Y_steady

if abs(X_error)>mpu_tor or abs(Y_error)>mpu_tor:
status_GenOut(0, Y_error*P, X_error*P)

mailto:support@adeept.com


support@adeept.com

3

17
18
19
20
21

direct_M_move()
except:

time.sleep(0.1)
sensor = mpu6050(0x68)
pass

mailto:support@adeept.com

	19.1 Overview
	19.2 Introduction to Self-balancing
	19.3 Running the Self-balancing Function
	Running the Automatic Obstacle Avoidance program

	19.4 Code

