
support@adeept.com

1

Lesson 11 Demonstration of the Video and

Photographing

11.1 Overview

This lesson focuses on demonstrating how to utilize the video and photographing capabilities of

a Raspberry Pi integrated with an Adeept Robot HAT V3.2 and a USB Camera Module. We will

cover the principles behind video frame processing, both in single - threaded and multi -

threaded scenarios, and provide a step - by - step guide on setting up and running the relevant

programs. Additionally, the code implementation and its explanations will be presented to help

you understand how the system works.

11.2 Required Components

Components Quantity Picture

Raspberry Pi 1

Adeept Robot HAT V3.2 1

Camera Module 1

Camera Cable 1

mailto:support@adeept.com


support@adeept.com

2

11.3 Principle of Multithreaded Video Frames Processing

The OpenCV function is based on the flask-video-streaming project on GitHub,here we just

changed the camera_opencv.py file for operations with OpenCV.

Single threaded video frames processing

The process for single threading is as follows:

1. Capture Frame: First, capture an image frame from the camera.

2. OpenCV Analysis: Analyze the frame with OpenCV. This could involve tasks like object

detection, image filtering, or calculating the position of a target within the frame.

3. Generate Drawing Information: Based on the OpenCV analysis, generate the information to

be drawn, such as the central position of the target or the text to be displayed on the screen.

4. Draw Elements: Draw the elements (like rectangles around detected objects or text) on the

frame according to the generated information.

5. Display Frame: Display the image which has been processed and drawn on the webpage.

This single - threaded process is inefficient because it needs to wait for the OpenCV processing

and screen display of each frame to complete before starting the next frame processing. As a

https://github.com/miguelgrinberg/flask-video-streaming
mailto:support@adeept.com


support@adeept.com

3

result, it may cause the video transmission to be stuck or have a low frame rate, especially when

the OpenCV processing is computationally intensive.

Multi-threaded video frames processing

The process for multi - threaded video frames processing is as shown below:

1. Get the camera screen: This is the starting point of the process, where video frames are

captured from the camera.

2. Draw element: After obtaining the frames, elements are drawn on the video frames in this

step, such as the detected hand gesture contours.

3. Show video frame: Display the video frames with the drawn elements. Meanwhile, the

displayed video frames are used to generate drawing information, which may include details

such as the position and shape of the drawings.

4. Generate drawing information: The generated drawing information is fed back to the

"Draw element" step on one hand to assist subsequent drawing. On the other hand, the video

frames enter the "Last frame processing" judgment stage.

mailto:support@adeept.com


support@adeept.com

4

5. Last frame processing judgment: Determine whether the processing of the last frame is

completed. If not, return for further processing. If completed, proceed to the "OpenCV

processing video frames" step, where the OpenCV library is used to process the video frames,

such as denoising, binarization, feature extraction, etc. The processed video frames then return to

the "Get the camera screen" step, forming a loop to enable continuous processing and display of

the camera video.

11.4 Demonstration

1. Pemotely log:Remotely log in to the Raspberry Pi terminal.

2. Navigate to the Program Folder: Enter the following command in the terminal and press

Enter to access the folder where the program is located:

cd Adeept_DarkPaw-V3/Examples/05_Camera/

3. View Directory Contents: Type "ls" in the terminal and press Enter. This will display all the files

in the current directory, ensuring that the "app.py" ,"camera_pi2.py"and "base_camera.py" file

is present:

ls

4. Run the Program: After successful operation, the camera will take a photo image.jpg:

sudo libcamera-jpeg -o image.jpg -n

mailto:support@adeept.com


support@adeept.com

5

Some warning messages may appear, please ignore it. If other messages appear, please check

whether the camera is connected correctly.

Note: You need to disconnect the Raspberry Pi power supply before plugging or unplugging the

camera cable.

5. Type in "ls" to view the file.

ls

6. Install Dependencies and Manage Programs:The Raspberry Pi robot integrates real - time

video and OpenCV functions, and there are multiple ways to achieve real - time transmission of

videos captured by Raspberry Pi cameras over the network. This article will introduce a specific

method for achieving real - time video transmission.

The project uses Flask and related dependencies which have been included in the installation

scripts for the Adeept robot. However, if your Raspberry Pi has not run the script before or if

there are issues, you may need to install them.

sudo pip3 install flask

sudo pip3 install flask_cors

mailto:support@adeept.com


support@adeept.com

6

When the Raspberry Pi is configured with the robot software, the Raspberry Pi will automatically

run the WebServer.py program. If you need to use the camera in other programs, you need to

terminate this program. Termination command:

sudo killall python3

7. Run the Program: Enter the command below and press Enter to start the app.py program:

sudo python3 app.py

Open a web browser (here we use Chrome as an example) on a device on the same LAN of the

Raspberry Pi, enter in the address bar the Raspberry Pi's IP address and the video stream port

number ":5000", as shown below:

Example: http://192.168.3.31:5000

8. Now you can view the webpage created by the Raspberry Pi on your mobile or computer. After

data is loaded successfully, it'll display the videos captured by the Raspberry Pi in real time.

http://192.168.3.31:5000
mailto:support@adeept.com


support@adeept.com

7

11.5 Code

Complete code refer to app.py

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#!/usr/bin/env/python
# File name : app.py
# Website : www.Adeept.com
# Author : Adeept
# Date : 2025/04/23
from importlib import import_module
import os
from flask import Flask, render_template, Response

# import camera driver
#if os.environ.get('CAMERA'):
# Camera = import_module('camera_' + os.environ['CAMERA']).Camera
#else:
# from camera import Camera

# Raspberry Pi camera module (requires picamera package)
from camera_pi2 import Camera

app = Flask(__name__)

@app.route('/')
def index():

"""Video streaming home page."""
return render_template('index.html')

def gen(camera):
"""Video streaming generator function."""
yield b'--frame\r\n'
while True:

frame = camera.get_frame()
yield b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n--frame\r\n'

@app.route('/video_feed')
def video_feed():

"""Video streaming route. Put this in the src attribute of an img tag."""
return Response(gen(Camera()),

mimetype='multipart/x-mixed-replace; boundary=frame')

if __name__ == '__main__':
app.run(host='0.0.0.0', threaded=True)

Complete code refer to base_camera.py

001
002

#!/usr/bin/env/python3
# File name : base_camera.py

mailto:support@adeept.com


support@adeept.com

8

003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058

# Website : www.Adeept.com
# Author : Adeept
# Date : 2025/04/23
import time
import threading
try:

from greenlet import getcurrent as get_ident
except ImportError:

try:
from thread import get_ident

except ImportError:
from _thread import get_ident

class CameraEvent(object):
"""An Event-like class that signals all active clients when a new frame is
available.
"""
def __init__(self):

self.events = {}

def wait(self):
"""Invoked from each client's thread to wait for the next frame."""
ident = get_ident()
if ident not in self.events:

# this is a new client
# add an entry for it in the self.events dict
# each entry has two elements, a threading.Event() and a timestamp
self.events[ident] = [threading.Event(), time.time()]

return self.events[ident][0].wait()

def set(self):
"""Invoked by the camera thread when a new frame is available."""
now = time.time()
remove = None
for ident, event in self.events.items():

if not event[0].isSet():
# if this client's event is not set, then set it
# also update the last set timestamp to now
event[0].set()
event[1] = now

else:
# if the client's event is already set, it means the client
# did not process a previous frame
# if the event stays set for more than 5 seconds, then assume
# the client is gone and remove it
if now - event[1] > 5:

remove = ident
if remove:

del self.events[remove]

def clear(self):
"""Invoked from each client's thread after a frame was processed."""
self.events[get_ident()][0].clear()

mailto:support@adeept.com


support@adeept.com

9

059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108

class BaseCamera(object):
thread = None # background thread that reads frames from camera
frame = None # current frame is stored here by background thread
last_access = 0 # time of last client access to the camera
event = CameraEvent()

def __init__(self):
"""Start the background camera thread if it isn't running yet."""
if BaseCamera.thread is None:

BaseCamera.last_access = time.time()

# start background frame thread
BaseCamera.thread = threading.Thread(target=self._thread)
BaseCamera.thread.start()

# wait until first frame is available
BaseCamera.event.wait()

def get_frame(self):
"""Return the current camera frame."""
BaseCamera.last_access = time.time()

# wait for a signal from the camera thread
BaseCamera.event.wait()
BaseCamera.event.clear()

return BaseCamera.frame

@staticmethod
def frames():

""""Generator that returns frames from the camera."""
raise RuntimeError('Must be implemented by subclasses.')

@classmethod
def _thread(cls):

"""Camera background thread."""
print('Starting camera thread.')
frames_iterator = cls.frames()
for frame in frames_iterator:

BaseCamera.frame = frame
BaseCamera.event.set() # send signal to clients
time.sleep(0)

# if there hasn't been any clients asking for frames in
# the last 10 seconds then stop the thread
if time.time() - BaseCamera.last_access > 10:

frames_iterator.close()
print('Stopping camera thread due to inactivity.')
break

BaseCamera.thread = None

Complete code refer to camera_pi2.py

01 #!/usr/bin/env/python3

mailto:support@adeept.com


support@adeept.com

10

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

# File name : camera_pi2.py
# Website : www.Adeept.com
# Author : Adeept
# Date : 2025/04/23
import io
import time
from picamera2 import Picamera2, Preview
from base_camera import BaseCamera

class Camera(BaseCamera):
@staticmethod
def frames():

with Picamera2() as camera:
camera.start()

# let camera warm up
time.sleep(2)

stream = io.BytesIO()
try:

while True:
camera.capture_file(stream, format='jpeg')
stream.seek(0)
yield stream.read()

# reset stream for next frame
stream.seek(0)
stream.truncate()

finally:
camera.stop()

Code explanations

app.py

Loop Control Process

Initiate the Loop: Enter an infinite loop to continuously perform the following operations related

to video streaming.

Video Frame Generation and Streaming:

Step 1: Call the functions from base_camera.py and camera_pi2.py to capture a video frame from

the camera.

Step 2: Process the captured frame using OpenCV (as per the functionality implemented in those

files).

Step 3: Generate the drawing information based on the processed frame.

Step 4: Draw the relevant elements on the frame according to the drawing information.

mailto:support@adeept.com


support@adeept.com

11

Step 5: Send the processed and drawn frame to the client's web browser via the /video_feed

route, which is set up to stream the video data.

Step 6: Wait for a short period (determined by the desired frame rate) before repeating the

process for the next frame. This creates a continuous video - streaming effect.

mailto:support@adeept.com

	11.1 Overview
	11.2 Required Components
	11.3 Principle of Multithreaded Video Frames Proce
	Single threaded video frames processing 
	Multi-threaded video frames processing 

	11.4 Demonstration
	11.5 Code
	 Code explanations

