www.adeept.com

Lesson 16 Control the LED through TCP

16.1 Overview

In this lesson, we will create a system that uses a Raspberry Pi to control an LED. By leveraging
the TCP protocol, instructions will be sent from a client device to the Raspberry Pi connected on
the server side, and then the Raspberry Pi will control the state of the LED. This aims to enable
beginners to understand how to combine TCP-based communication with simple hardware

control.

16.2 Required Components

" . "*

Raspberry Pi 1

Adeept Robot HAT V3.2 1

16.3 Principle Introduction

In our system, the client will send commands like "LED1 ON" or "LED1 OFF" over the TCP
connection. The server - side Raspberry Pi will receive these commands and use the GPIO pins to
control the LED's state accordingly.

Instruction Describe
LED1 ON Turn on the LED labeled as LED1
LED1 OFF Turn off the LED labeled as LED1
LED2 ON Turn on the LED labeled as LED2

support@adeept.com

mailto:support@adeept.com

BEA v \ww.adeept.com

LED2 OFF Turn off the LED labeled as LED2
LED3 ON Turn on the LED labeled as LED3
LED3 OFF Turn off the LED labeled as LED3
LEDALL ON Turn on all the LEDs in the system
LEDALL OFF Turn off all the LEDs in the system

1. Remotely log:Remote login as a server-side Raspberry Pi terminal.

2. Navigate to the Program Folder: Enter the following command in the terminal and press
Enter to access the folder where the program is located:

cd Adeept_DarkPaw-V3/Examples/09_Remote_Control/

3. View Directory Contents: Type "Is" in the terminal and press Enter. This will display all the files

in the current directory, ensuring that the "LedServer.py"and "LedClient.py"file is present:

4. Enter the command below and press Enter to start the LedServer.py program:

sudo python3 LedServer.py

5. To run the client program, you need to provide the server's IP address as a parameter. Use the

following command, replacing <server_ip> with the actual IP address of the Raspberry Pi

running the serve:

support@adeept.com

mailto:support@adeept.com

BER v\ w.adeept.com

sudo python3 LedClient.py <server_ip>

For example, my Raspberry Pi IP address is "192.168.3.31", and the command to run the client
program is as follows:

sudo python3 LedClient.py 192.168.3.31
Sending Commands:

On Raspberry Pi servers, the script will prompt you to enter commands. For example, you can
input "LED1 ON". After entering the command, the client will send it to the client through a TCP
connection..

Client - side:

On the server-side terminal, you will see the received command printed out and the led1 light
will be illuminated.

Server - side:

Now you can see that the onboard LED is already on. You can also control the on and off states

of other LEDs by using the commands in the previous table.
Termination:
Server - side:

When you want to terminate a running program, you can press the "Ctrl+C" shortcut key on the
keyboard.

Client - side:

When you want to terminate a running program, you can press the "Ctrl+C" shortcut key on the

keyboard or enter "exit" on the keyboard and click "Enter".

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

16.5 Code

Complete code refer to LedServer.py.

001 #!/usr/bin/env/python3

002 # File name : LedServer.py
003 | # Website : www.Adeept.com
004 # Author : Adeept

005 | # Date : 2025/04/24

006 = import socket

007 | import threading

008 | from gpiozero import LED
009
010 = # Function to set up the LED objects.

011 # Initializes three LED objects corresponding to different GPIO pins.
012 | def switchSetup():

013 global ledl, led2, led3
014 ledl = LED(9)

015 led2 = LED(25)

016 led3 = LED(11)

017

018 @ # Function to control the state of a specific LED.
019 | # port: The number of the LED (1, 2, or 3).

020 # status: 1 to turn the LED on, © to turn it off.
021 | def switch(port, status):

022 if port ==

023 if status ==

024 ledl.on()

025 elif status == O:
026 ledl.off()
027 elif port ==

028 if status ==

029 led2.on()

030 elif status == O:
031 led2.off()
032 elif port ==

033 if status ==

034 led3.on()

035 elif status == O:
036 led3.off()
037 else:

038 print('Wrong Command: Example--switch(3, 1)->to switch on port3')
039

040 | # Function to handle client connections.

041 # client_socket: The socket object used for communication with the client.
042 # client_address: The address of the client.

043 | def handle_client(client_socket, client_address):

044 try:

045 while True:

046 data = client_socket.recv(1024)

047 if not data:

048 break

049 try:

050 message = data.decode('utf-8")

051 print(f"Received command: {message}")

support@adeept.com

mailto:support@adeept.com

BE v ww.adeept.com

053
054
055
056

060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105

if message.startswith("LED"):
parts = message.split()
if message == "LEDALL ON":
switch(1, 1)
switch(2, 1)
switch(3, 1)
print("All LEDs are turned on")
elif message == "LEDALL OFF":
switch(1, @)
switch(2, @)
switch(3, @)
print("All LEDs are turned off")
else:
led_num = int(parts[0][3:])
if len(parts) == 2:
if parts[1] == "ON":
switch(led_num, 1)
print(f"LED{led_num} is turned on")
elif parts[1] == "OFF":
switch(led_num, 0)

print(f"LED{led_num} is turned off")

else:
print(f"Invalid command: {message}")
else:
print(f"Invalid command: {message}")
except UnicodeDecodeError:
print(f"Error decoding the received data: {data}")
except socket.error as e:

print(f"Socket error while communicating with {client_address}

except Exception as e:

print(f"Error handling the client request: {e}")
finally:

client_socket.close()

Create a TCP-based socket object.

2 {e}”)

AF_INET indicates the IPv4 address family, and SOCK_STREAM indicates the TCP protocol.

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to all available network interfaces and set the port number to 86000.

server_address = ('0.0.0.0', 8000)
server_socket.bind(server_address)

Start listening for incoming connections.

The maximum number of queued connections is set to 5.
server_socket.listen(5)

print("Server has started and is listening for connections...™)

switchSetup()
while True:

client_socket, client_address = server_socket.accept()
print(f"Accepted connection from {client_address}")

client_thread = threading.Thread(target=handle_client, args=(client_socket, client_address))

client_thread.start()

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

Complete code refer to LedClient.py.

o1
02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#!/usr/bin/env/python3

File name : LedClient.py
Website : www.Adeept.com
Author : Adeept

Date : 2025/04/24

import socket
import sys

if len(sys.argv)!= 2:

print("Please enter the server's IP address when running, for example: python3 client.py
192.168.3.31")

sys.exit(1)

server_ip = sys.argv[1]
server_port = 8000

Create a TCP - based socket object
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:
Connect to the server
client_socket.connect((server_ip, server_port))
while True:
Get input from the keyboard
message = input("Please enter the message to send (type 'exit' to quit): ")
if message.lower() == 'exit':
break
Send the message to the server
client_socket.send(message.encode('utf-8'))
except socket.error as e:
print(f"Error connecting to the server: {e}")
finally:
Close the client socket
client_socket.close()

Code explanation

LedServer.py

Import the necessary libraries and initialize three LED objects.

Define a function to control the on and off states of the LEDs.

Create a TCP socket, bind it to an address and port, and start listening.

Enter a loop and wait for client connections.

support@adeept.com

mailto:support@adeept.com

A v\ w.adeept.com

When there is a connection, create a new thread. In the thread, receive commands from the

client, and control the on and off states of the LEDs after parsing the commands.

LedClient.py

Import the socket and sys libraries, check the running parameters, and obtain the server's IP
address.

Create a TCP socket and connect to the server.

Enter a loop to receive user input. If the input is exit, exit the loop; otherwise, encode the
message and send it to the server.

support@adeept.com

mailto:support@adeept.com

	16.1 Overview
	16.2 Required Components
	16.3 Principle Introduction
	16.4 Demonstration
	16.5 Code
	 Code explanation

