www.adeept.com

Lesson 8 Use the Buzzer to Play Music

8.1 Overview

This lesson will explore using Raspberry Pi and Adeept Robot HAT V3.2 to make the buzzer play
music. First, understand the components, principles, and wiring, then run a Python program to

demonstrate playing different notes and songs.

8.2 Required Components

AL o

Raspberry Pi 1

Adeept Robot HAT V3.2 1

8.3 Principle Introduction

A buzzer is an electronic device that can produce sound. The onboard buzzer on Adeept Robot
HAT V3.2 operates based on electromagnetic principles. When current passes through the coil
inside the buzzer, a magnetic field is generated. This magnetic field interacts with the internal
components of the buzzer, causing the diaphragm or vibrating element to move. As the
diaphragm vibrates, it generates sound waves in the surrounding air.

In the environment of Raspberry Pi, we use GPIO (General Purpose Input/Output) pins to control
the buzzer. The GPIO18 pin connected to the buzzer can output different electrical signals
through programming. By sending a series of electrical pulses with specific frequency and
duration to the buzzer through the GPIO18 pin, we can make it emit different notes. For example,
higher frequency electrical signals produce higher pitch notes, while lower frequency signals

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

produce lower pitch notes. The duration of each signal determines the playback time of the notes.
We use the Python programming language to generate these electrical signals by controlling

GPIO pins, thereby creating melodies and playing music.

GPIO18 Buzzer

8.4 Wiring Diagram

The motherboard of Adeept Robot HAT V3.2 is equipped with an onboard buzzer. This onboard
buzzer is connected to the GPIO18 pin.

BUZZERI

support@adeept.com

mailto:support@adeept.com

BER v w.adeept.com

I E 00006000 EOE
S ®Ae06 e e e e e

s 15 14 13 12 1 10 9 8

s T P

8.5 Demonstration

Run the code
1. Remotely log:Remotely log in to the Raspberry Pi terminal..

2. Navigate to the Program Folder: Enter the following command in the terminal and press

Enter to access the folder where the program is located:

3. View Directory Contents: Type "Is" in the terminal and press Enter. This will display all the files
in the current directory, ensuring that the "SingleTone.py" , ” SevenNotes.py” and
"HappyBirthday.py” file is present:

support@adeept.com

mailto:support@adeept.com

B v vww.adeept.com

4. Run the Program:Demonstrate how to use a buzzer to play a single note.

sudo python3 SingleTone.py

5. Observation and Termination:After successfully running the program, the buzzer will sound a
note. When you want to terminate the running program, you can press the "Ctrl + C" shortcut

key on the keyboard.
6. Run the Program:Demonstrate how to use a buzzer to play seven basic notes.

sudo python3 SevenNotes.py

7. Observation and Termination:After successfully running the program, you will hear the
buzzer emit seven basic notes. When you want to terminate the running program, you can press
the "Ctrl+C" shortcut key on the keyboard.

8. Run the Program:Demonstrate how to use a buzzer to play the song “"Happy Birthday” .

sudo python3 HappyBirthday.py

a

A
A
'

1

[Y

support@adeept.com

mailto:support@adeept.com

BE v ww.adeept.com

9. Observation and Termination:After successfully running the program, the buzzer will play the

song "Happy Birthday"., When you want to terminate a running program, you can press the

Ctrl+C shortcut key on the keyboard.

8.6 Code

Complete code refer to SingleTone.py.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#!/usr/bin/env/python3

File name : SingleTone.py
Website : www.Adeept.com
Author : Adeept

Date : 2025/04/23

from gpiozero import TonalBuzzer
from time import sleep

Initialize a TonalBuzzer connected to GPIO18 (BCM)
tb = TonalBuzzer(18)

Define a single note
SINGLE_NOTE = [["C4", 0.5]]

def play(tune):
Play a musical tune using the buzzer.
:param tune: List of tuples (note, duration),
where each tuple represents a note and its duration.
for note, duration in tune:
print(note) # Output the current note being played
tb.play(note) # Play the note on the buzzer
sleep(float(duration)) # Delay for the duration of the note
tb.stop() # Stop playing after the tune is complete
if __name__ == "__main__":
try:
First demo: Play a single note
print("Demo: Playing a single note")
play(SINGLE_NOTE)

except KeyboardInterrupt:
Handle KeyboardInterrupt for graceful termination
tb.stop()
print("Program terminated by user.")

Complete code refer to SevenNotes.py.

o1
02
03
04

01 #!/usr/bin/env/python3
02| # File name : SevenNotes.py
03| # Website : www.Adeept.com
04 | # Author : Adeept

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

05 05 | # Date : 2025/04/23
06 06 | from gpiozero import TonalBuzzer
o7 07 | from time import sleep
08 08
09 09 | # Initialize a TonalBuzzer connected to GPIO18 (BCM)
10 10 tb = TonalBuzzer(18)
11 11
12 12 # Define 7 musical notes, the following are the frequencies corresponding to the seven musical
13 13 notes.
14 14 | #C4-261.63 D4-293.66 E4-328.63 F4-348.23 G4-392.00 A4-440.00 B4-
15 15| 493.88
16 16 | SEVEN_NOTES = [
17 17 ["c4", ©.5], ["D4", ©.5], ["E4", ©.5], ["F4", @.5],
18 18 ["G4", ©.5], ["A4", 0.5], ["B4", 0.5]
19 19|]
20 20
21 21
22 22 | def play(tune):
23 23
24 24 Play a musical tune using the buzzer.
25 25 :param tune: List of tuples (note, duration),
26 26 where each tuple represents a note and its duration.
27 27
28 28 for note, duration in tune:
29 29 print(note) # Output the current note being played
30 30 tb.play(note) # Play the note on the buzzer
31 31 sleep(float(duration)) # Delay for the duration of the note
32 32 tb.stop() # Stop playing after the tune is complete
33 33
34 34| if __name__ == "__main__":
35 35 try:
36 36 # Second demo: Introduce 7 musical notes
37 37 print("Demo: Introducing 7 musical notes")
38 38 play (SEVEN_NOTES)
39 except KeyboardInterrupt:
40 # Handle KeyboardInterrupt for graceful termination
tb.stop()

print("Program terminated by user.")

Complete code refer to HappyBirthday.py.

01| #!/usr/bin/env/python3

02| # File name : HappyBirthday.py
03| # Website : www.Adeept.com
04 | # Author : Adeept

05| # Date : 2025/04/23

06 | from gpiozero import TonalBuzzer

07 | from time import sleep

08

09 | # Initialize a TonalBuzzer connected to GPIO18 (BCM)
10 tb = TonalBuzzer(18)

11

12 # Define the "Happy Birthday" song

13 | HAPPY_BIRTHDAY_SONG = [

support@adeept.com

mailto:support@adeept.com

www.adeept.com

14 ["G4", ©.3], ["G4", ©.3], ["A4", 0.3], ["G4", ©.3], ["C5", @©.3], ["B4", 0.6],
15 ["G4", ©.3], ["G4", ©.3], ["A4", 0.3], ["G4", ©.3], ["D5", @©.3], ["C5", @.6],
16 ["G4", ©.3], ["G4", ©.3], ["C5", ©.3], ["B4", ©.3], ["C5", ©.3], ["B4", 0.3], ["A4", 0.6],
17 ["F5", ©.3], ["F5", ©.3], ["B4", ©.3], ["C5", @.3], ["D5", ©.3], ["C5", @.6]
18] 1]

19

20 | def play(tune):

21 e

22 Play a musical tune using the buzzer.

23 :param tune: List of tuples (note, duration),

24 where each tuple represents a note and its duration.

25 e

26 for note, duration in tune:

27 print(note) # Output the current note being played

28 tb.play(note) # Play the note on the buzzer

29 sleep(float(duration)) # Delay for the duration of the note

30 tb.stop() # Stop playing after the tune is complete

31

32| if __name__ == "__main__":

33 try:

34 # Third demo: Play the entire "Happy Birthday" song

35 print("Demo: Playing the Happy Birthday song")

36 play(HAPPY_BIRTHDAY_SONG)

37

38 except KeyboardInterrupt:

39 # Handle KeyboardInterrupt for graceful termination

40 tb.stop()

41 print("Program terminated by user.")

Code explanation

SingleTone.py
Initialization Stage:
Initialize the buzzer connected to GPIO18 by calling TonalBuzzer(18).

Define the tone parameters: SINGLE_NOTE = [["C4", 0.5]] (Middle C, with a duration of 0.5
seconds).

Playback Process

Enter the single - play process and execute the following steps sequentially:
Play the C4 tone — Last for 0.5 seconds — Stop automatically.

Print the name of the currently playing note in real - time.

When Ctrl+C is detected:

Stop the buzzer immediately,Output an exit prompt, Terminate the program.

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

SevenNotes.py

Initialization Stage:

Initialize the buzzer connected to GPIO18 using TonalBuzzer.
Scale Definition:

Pre - Define 7 musical notes, the following are the frequencies corresponding to the seven

musical notes.
C4-261.63 D4-293.66 E4-328.63 F4-348.23 G4-392.00 A4-440.00 B4-493.88
Playback Process:

Play the seven notes in sequence (from C4 to B4).
Print the note name (such as "C4") when each note is played.
Automatically stop after all notes have been played.

Press Ctrl+C to immediately mute the buzzer and exit the program.

HappyBirthday.py

Initialization Stage:

Initialize the buzzer connected to GPIO18 using TonalBuzzer.
Song Definition:

Pre - define the complete melody of "Happy Birthday", including notes from G4 to F5 (for

example, ['G4", 0.3] means the G4 note lasts for 0.3 seconds).
Playback Process:

Play all 24 notes in sequence to form the complete song.
Print the note name (such as "C5") when each note is played.

Alternate between short notes (0.3 seconds) and long notes (0.6 seconds) to simulate the rhythm

of the song.
Press Ctrl+C to immediately mute the buzzer and exit the program.

The complete playback takes about 9 seconds, realizing the electronic buzzer performance of the

classic "Happy Birthday" melody.

support@adeept.com

mailto:support@adeept.com

BER v ww.adeept.com

support@adeept.com

mailto:support@adeept.com

	8.1 Overview
	8.2 Required Components
	8.3 Principle Introduction
	8.4 Wiring Diagram
	8.5 Demonstration
	Run the code

	8.6 Code
	 Code explanation
	Scale Definition:
	Pre - Define 7 musical notes, the following are th
	C4-261.63 D4-293.66 E4-328.63 F4-348.23 G4-392
	Playback Process:

