www.adeept.com

Lesson 12 Implement Object, Color &
Gesture Recognition with OpenCV

12.1 Overview

In this lesson, we will learn how to use Raspberry Pi, Adeept Robot HAT V3.2, and USB camera
module, combined with OpenCV library, to achieve motion capture, color recognition, and
gesture recognition functions. Through practical operation, master the relevant technical
principles and be able to apply these technologies in practical projects, such as implementing
visual based interactive control in scenarios such as smart cars.

12.2 Required Components

Raspberry Pi 1
Adeept Robot HAT V3.2 1
Camera Module 1
Camera Cable 1

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

In this project, the implementation of motion capture, color recognition, and gesture recognition
functions relies on various technical principles. The following will provide a detailed introduction
to these principles.

Motion Capture

The motion capture function utilizes OpenCV's Haar cascade classifier or deep learning models
(such as YOLO, SSD, etc.) to achieve object recognition.

The working method of Haar cascade classifier is to first learn from massive sample images,
extract object features from them, and store them in the form of Haar features. In the actual
recognition stage, it will match the images captured by the camera with the learned Haar
features. The specific method is to use sliding windows to traverse the image one by one, analyze
each window area, and determine whether there is a target object in it. The advantage of this
method lies in its relatively simple calculation, but it has a strong dependence on samples and
limited adaptability to complex backgrounds and lighting changes.

Deep learning models are trained on a large amount of annotated data and have the ability to
automatically learn complex feature representations of objects. Taking the YOLO (You Only Look
Once) model as an example, it transforms object detection tasks into a regression problem that
can directly predict the category and position of objects on images. The biggest feature of this
model is its fast speed, which can achieve real-time detection while ensuring a certain level of
accuracy, making it suitable for scenarios with high real-time requirements.

SSD (Single Shot MultiBox Detector) is also based on deep learning technology, which performs
object detection on feature maps of different scales. This multi-scale detection mechanism
enables it to effectively detect objects of different sizes, demonstrating good detection
performance in complex scenes and meeting diverse object detection needs.

Color Recognition

Video color recognition is a technology for detecting and analyzing specific colors in a video
stream, and its principles are as follows:

Color Space Conversion: Video images are mostly stored and displayed in the RGB color space.
However, for color recognition, they are often converted into color spaces such as HSV that are
more conducive to color processing. For example, the characteristics of hue, saturation, and value

support@adeept.com

mailto:support@adeept.com

BER v w.adeept.com

in HSV are more in line with human perception of colors, and it has better robustness to changes

in lighting conditions.

Color Feature Extraction: Process the video frames in the selected color space and extract color
features. For instance, in the HSV color space, colors are determined by setting specific value

ranges, or a color histogram is calculated to reflect the probability distribution of colors.

Threshold Setting and Matching: Set a threshold range according to the target color, and match
the extracted color features with it to determine whether it is the target color. Also, the threshold
needs to be adjusted and optimized according to the actual situation.

Time Series Analysis: Since a video is composed of consecutive frames, analyze the color changes
in adjacent frames to determine dynamic information such as the appearance, disappearance,
and movement of colors, which improves the accuracy and reliability of recognition.

Assistance of Machine Learning and Deep Learning: Use algorithms such as Support Vector
Machines (SVM) and Convolutional Neural Networks (CNN). Train the model with a large amount
of annotated image data to learn the pattern of color features and handle complex color

recognition tasks.

Gesture Recognition

Gesture recognition begins with a skin color detection algorithm to extract the hand area from
video frames. Commonly used skin color detection methods are based on color models,
leveraging the distribution characteristics of skin color in specific color spaces (such as the YCbCr
color space or the HSV color space). By setting thresholds, the skin color area is filtered out.

Then, a contour detection algorithm is used to obtain the hand contour. In OpenCV, the
findContours function can be used to find contours in the image. The convex hull of the contour
is calculated. The convex hull is the smallest convex polygon that encloses the contour, which can
be achieved using the convexHull function.

Finally, different gestures are recognized by detecting the number and position of convex defects
in the convex hull. For example, when making a fist, the number of convex defects in the hand
contour is relatively small, while when opening the palm, the number is larger. Based on these
characteristic differences, different gesture actions can be determined.

1. Remotely log:Remotely log in to the Raspberry Pi terminal.

support@adeept.com

mailto:support@adeept.com

B v vww.adeept.com

2. Navigate to the Program Folder: Enter the following command in the terminal and press

Enter to access the folder where the program is located:

cd Adeept_DarkPaw-V3/Examples/06_OpenCV/

3. View Directory Contents: Type "Is" in the terminal and press Enter. This will display all the

files in the current directory, ensuring that the "Camera_FindColor.py" ,

"Camera_Gesture.py'and "Camera_WatchDog.py"file is present:

4. Run the Program: Enter the command below and press Enter to start the

Camera_WatchDog.py program:

sudo python3 Camera_WatchDog.py

5. Open a web browser (here we use Chrome as an example) on a device on the same LAN of the

Raspberry Pi, enter in the address bar the Raspberry Pi's IP address and the video stream port
number ":5000", as shown below:

Example: http://192.168.3.31:5000

6. Now, you can view web pages created by Raspberry Pi on your phone or computer. After
successfully loading the data, make an action in front of the camera and you should be able to
see the detected action area in the video stream marked by a green rectangle. and when you

want to terminate the running program, you can press the "Ctrl+C" shortcut key on the keyboard.

support@adeept.com

http://192.168.3.31:5000
mailto:support@adeept.com

BE v ww.adeept.com

Video Streaming Demonstration

7. Run the Program: Enter the command below and press Enter to start the Camera_Gesture.py

program:

sudo python3 Camera_Gesture.py

8. Open a web browser (here we use Chrome as an example) on a device on the same LAN of the

Raspberry Pi, enter in the address bar the Raspberry Pi's IP address and the video stream port
number ":5000", as shown below:

Example:http://192.168.3.31:5000

9. Use a Raspberry Pi camera to capture video streams. In each frame, detect the hand skin area,
recognize gestures (fist - clenching or palm - opening) by the number of convex defects in the
hand, and display the results in real - time on the frames. Then, stream the processed frames to a
webpage for viewing. and when you want to terminate the running program, you can press the
"Ctrl+C" shortcut key on the keyboard.

support@adeept.com

http://192.168.3.31:5000
mailto:support@adeept.com

B v ww.adeept.com

Video Streaming Demonstration

Video Streaming Demonstration

10. Run the Program: Enter the command below and press Enter to start the
Camera_FindColor.py program:

support@adeept.com

mailto:support@adeept.com

A v\ w.adeept.com

sudo python3 Camera_FindColor.py

11. Open a web browser (here we use Chrome as an example) on a device on the same LAN of
the Raspberry Pi, enter in the address bar the Raspberry Pi's IP address and the video stream port

number ":5000", as shown below:

Example:http://192.168.3.31:5000

12. Now capture video streams in real-time using the Raspberry Pi camera (Picamera2) and
detect yellow objects in video frames. After detecting a yellow object, a green rectangular box
will be drawn around it and a text label of "Yellow Object" will be added. Finally, the processed
video stream is displayed in real-time through a web page. and when you want to terminate the
running program, you can press the "Ctrl+C" shortcut key on the keyboard.

Video Streaming Demonstration

13. In Camera_FindColor.py, the default color recognition is to search for yellow objects, which is

mainly achieved by defining the color range in the HSV (Hue, Saturation, Value) color space. If

support@adeept.com

http://192.168.3.31:5000
mailto:support@adeept.com

www.adeept.com

you want to find other colors, you need to modify the definition of the color range and the
corresponding text labels. The specific steps are as follows:

Determine the HSV range of the target color: Different colors have different value ranges in the
HSV color space. The approximate HSV range of the target color can be determined through
tools such as online HSV color selectors or experiments.

Note that in practical applications, adjustments may need to be made based on specific lighting
conditions and color depth.

Modify the color range in the code: In the Camera_FindColor.py file, find the code section that
defines the yellow color range:

Define the lower limit of yellow in the HSV color space

Define the upper limit of yellow in the HSV color space

Modify it to the HSV range of the target color. For example, when searching for red:

Define the lower limit of red in the HSV color space

Define the upper limit of red in the HSV color space

Modify Text Label: When a target color object is detected, the code will draw a text label on the
image. By default, when searching for yellow objects, the label is "Yellow Object". In order to
display the detected colors more intuitively, it is necessary to modify this text label. Find the code

section for drawing text labels:

Modify it to the text corresponding to the target color, such as when searching for red objects:

By following the above steps, you can modify the Camera_FindColor.py code to enable it to

search for objects of colors other than yellow. During the modification process, attention should

support@adeept.com

mailto:support@adeept.com

BER v ww.adeept.com

be paid to the accuracy of the HSV color range, as well as the clarity and accuracy of the text
labels, to ensure that the program can correctly recognize and display the target color object.

12.5 Code

Complete code refer to Camera_WatchDog.py

001 #!/usr/bin/env/python3

002 # File name : Camera_WatchDog.py
003 | # Website : www.Adeept.com

004 # Author : Adeept

005 | # Date : 2025/04/24

006 | import time

007 | import cv2

008 | import imutils

009 | import numpy as np

010 | from picamera2 import Picamera2

011 | import libcamera

012 | from base_camera import BaseCamera

013 import datetime

014 | from flask import Flask, render_template, Response

016 | hflip = o

017 vflip = 0

018 | ImgIsNone = ©

019 | app = Flask(__name__)

020

021

022 class Camera(BaseCamera):

023 def __init_ (self):

024 super().__init_ ()

025 self.avg = None

026 self.drawing = ©

027 self.motionCounter = @

028 self.lastMovtionCaptured = datetime.datetime.now()

029

030 def watchDog(self, frame):

031 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

032 gray = cv2.GaussianBlur(gray, (21, 21), 0)

033

034 if self.avg is None:

035 print("[INFO] starting background model...")

036 self.avg = gray.copy().astype("float")

037 return frame

038

039 cv2.accumulateWeighted(gray, self.avg, 0.5)

040 frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg))
041

042 thresh = cv2.threshold(frameDelta, 5, 255, cv2.THRESH_BINARY)[1]
043 thresh = cv2.dilate(thresh, None, iterations=2)

044 cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
045 cnts = imutils.grab_contours(cnts)

046

047 for ¢ in cnts:

support@adeept.com

mailto:support@adeept.com

BECHN v ww.adeept.com

048
049
050
051
052

if cv2.contourArea(c) < 5000:
continue
(X, ¥, W, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (@, 255, 0), 2)
self.drawing = 1
self.motionCounter += 1
self.lastMovtionCaptured = datetime.datetime.now()

if (datetime.datetime.now() - self.lastMovtionCaptured).seconds >= 0.5:
self.drawing = ©

return frame

@staticmethod
def frames():
picam2 = Picamera2()
preview_config = picam2.preview_configuration
preview_config.size = (640, 480)
preview_config.format = 'RGB888"'
preview_config.transform = libcamera.Transform(hflip=hflip, vflip=vflip)
preview_config.colour_space = libcamera.ColorSpace.Sycc()
preview_config.buffer_count = 4

preview_config.queue = True

if not picam2.is_open:
raise RuntimeError('Could not start camera.')

try:
picam2.start()
time.sleep(2)

camera_ins = Camera()

while True:
img = picam2.capture_array()

if img is None:

if ImgIsNone ==
print("-----------mmmmem- ")
print("\@33[31merror: Unable to read camera data.\@33[om")
print("Press the keyboard keys \033[34m'Ctrl + C'\@33[@m multiple times to exit

the current program.")

print("-------- Ctrl+C quit----------- ")
ImgIsNone = 1

continue

processed_frame = camera_ins.watchDog(img)
_, encoded_frame = cv2.imencode('.jpg', processed_frame)
yield encoded_frame.tobytes()

except Exception as e:
print(f"\033[38;5;1mError:\033[@m\n{e}")
print("\nPlease check whether the camera is connected well, "
"and disable the \"legacy camera driver\" on raspi-config")
finally:
picam2.stop()

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

104
105 @app.route('/")
106 @ def index():

107 """Video streaming home page."""

108 return render_template('index.html")

109

110

111 def gen(camera):

112 """Video streaming generator function."""
113 yield b'--frame\r\n'

114 while True:

115 frame = camera.get_frame()

116 yield b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n--frame\r\n'
117

118

119 @app.route('/video_feed')
120 . def video_feed():

121 """Video streaming route. Put this in the src attribute of an img tag."""
122 return Response(gen(Camera()),

123 mimetype="multipart/x-mixed-replace; boundary=frame')

124

125

126 | if __name__ == '__main__':

127 app.run(host='0.0.0.0"', threaded=True)

Complete code refer to Camera_Gesture.py

001 #!/usr/bin/env/python3

002 # File name : Camera_Gesture.py
003 | # Website : www.Adeept.com
004 # Author : Adeept

005 | # Date : 2025/04/24

006 | from flask import Flask, render_template, Response
007 | import time

008 | import cv2

009 | import numpy as np

010 = import picamera2

011 import libcamera

012 = from base_camera import BaseCamera
013 | from picamera2 import Picamera2
014 | hflip = 0

015 | vflip = @

016 ImgIsNone = @

017 | app = Flask(__name__)

018

019 | class Camera(BaseCamera):

020 @staticmethod

021 def frames():

022 picam2 = Picamera2()

023 preview_config = picam2.preview_configuration

024 preview_config.size = (640, 480)

025 preview_config.format = 'RGB888"'

026 preview_config.transform = libcamera.Transform(hflip=hflip, vflip=vflip)
027 preview_config.colour_space = libcamera.ColorSpace.Sycc()
028 preview_config.buffer_count = 4

029 preview_config.queue = True

030

support@adeept.com

mailto:support@adeept.com

B v vww.adeept.com

031 if not picam2.is_open:

032 raise RuntimeError('Could not start camera.')

033

034 try:

035 picam2.start()

036 except Exception as e:

037 print(f"\@33[38;5;1mError:\033[@m\n{e}")

038 print("\nPlease check whether the camera is connected well, "

039 "and disable the \"legacy camera driver\" on raspi-config")

040

041 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))

042

043 while True:

044 img = picam2.capture_array()

045

046 if img is None:

047 if ImgIsNone ==

048 print("---------mmmmmmmaam - ")

049 print("\@33[31merror: Unable to read camera data.\@33[em")

050 print("Press the keyboard keys \033[34m'Ctrl + C'\@33[@m multiple times to exit the
051 current program.")

052 print("-------- Ctrl+C quit----------- ")

053 ImgIsNone = 1

054 continue

055

056 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

057 lower_skin = np.array([0, 20, 70], dtype=np.uint8)

058 upper_skin = np.array([20, 255, 255], dtype=np.uint8)

059 mask = cv2.inRange(hsv, lower_skin, upper_skin)

060 mask = cv2.erode(mask, kernel, iterations=2)

061 mask = cv2.dilate(mask, kernel, iterations=2)

062 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
063 if contours:

064 max_contour = max(contours, key=cv2.contourArea)

065 if cv2.contourArea(max_contour) > 500:

066 hull = cv2.convexHull(max_contour, returnPoints=False)

067 defects = cv2.convexityDefects(max_contour, hull)

068 if defects is not None:

069 num_defects = 0

070 for i in range(defects.shape[0]):

071 s, e, f, d = defects[i, @]

072 start = tuple(max_contour[s][0])

073 end = tuple(max_contour[e][0@])

074 far = tuple(max_contour[f][0])

075 a = np.sqrt((end[@] - start[0]) ** 2+(end[1] - start[1]) ** 2)
076 b = np.sqrt((far[@] - start[0]) ** 2+(far[1l] - start[1]) ** 2)
077 c = np.sqrt((end[@] - far[@]) ** 2+(end[1] - far[1l]) ** 2)

078 angle = np.arccos((b ** 2 + c ** 2 - a ** 2)/(2 * b * c)) * 57,2958
079 if angle <= 90:

080 num_defects += 1

081 cv2.circle(img, far, 5, [0, ©, 255], -1)

082 if num_defects < 3:

083 cv2.putText(img, "Fist", (5@, 5@), cv2.FONT_HERSHEY_ SIMPLEX, 1, (@, 255,
084 | 0), 2)

085 elif num_defects >= 3:

086 cv2.putText(img, "Open Hand", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (O,

support@adeept.com

mailto:support@adeept.com

IEER v vww.adeept.com

087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110

255, 9), 2)
_, encoded_frame = cv2.imencode('.jpg', img)
yield encoded_frame.tobytes()

@app.route('/")
def index():
return render_template('index.html")

def gen(camera):
yield b'--frame\r\n'
while True:
frame = camera.get_frame()
yield b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n--frame\r\n'

@app.route('/video_feed")
def video_feed():
return Response(gen(Camera()),
mimetype="multipart/x-mixed-replace; boundary=frame')
if _ _name__ == '__main__':
app.run(host='0.0.0.0', threaded=True)

Complete code refer to Camera_FindColor.py

001
002
003
004
005
006
007
008
009

024
025
026
027

#!/usr/bin/env/python3

File name : Camera_FindColor.py
Website : www.Adeept.com

Author : Adeept

Date : 2025/04/24

from importlib import import_module
import os

from flask import Flask, render_template, Response
import io

import time

import cv2

import numpy as np

import threading

import picamera2

import libcamera

from picamera2 import Picamera2
from base_camera import BaseCamera

hflip = @

vflip = @

ImgIsNone = @

app = Flask(__name__)

colorUpper = np.array([44, 255, 255])
colorLower = np.array([24, 100, 100])

support@adeept.com

mailto:support@adeept.com

BT v ww.adeept.com

028 | def map(input, in_min, in_max, out_min, out_max):

029 return (input - in_min) / (in_max - in_min) * (out_max - out_min) + out_min
030

031

032 | class Camera(BaseCamera):

033 modeSelect = 'findColor’

034

035 @staticmethod

036 def frames():

037 picam2 = Picamera2()

038

039 preview_config = picam2.preview_configuration

040 preview_config.size = (640, 480)

041 preview_config.format = 'RGB888"'

042 preview_config.transform = libcamera.Transform(hflip=hflip, vflip=vflip)
043 preview_config.colour_space = libcamera.ColorSpace.Sycc()

044 preview_config.buffer_count = 4

045 preview_config.queue = True

046

047 if not picam2.is_open:

048 raise RuntimeError('Could not start camera.')

049

050 try:

051 picam2.start()

052 except Exception as e:

053 print(f"\033[38;5;1mError:\033[@m\n{e}")

054 print("\nPlease check whether the camera is connected well, "
055 "and disable the \"legacy camera driver\" on raspi-config")
056

057

058 CVThreading = @

059 CVMode = 'none’

060 imgCV = None

061 findColorDetection = @

062 radius = @

063 box_x = None

064 box_y = None

065 drawing = ©

066 _ flag = threading.Event()

067 _ flag.clear()

068

069 def mode(invar, imgInput):

070 nonlocal CVMode, imgCV

071 CVMode = invar

072 imgCV = imgInput

073 _ flag.set()

074 def elementDraw(imgInput):

075 nonlocal findColorDetection, drawing, radius, box_x, box_y
076 if CVMode == 'findColor':

077 if findColorDetection:

078 drawing = 1

079 else:

080 drawing = @

081

082 if radius > 10 and drawing:

083 cv2.rectangle(imgInput, (int(box_x - radius), int(box_y + radius)),

support@adeept.com

mailto:support@adeept.com

BES v vww.adeept.com

084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

134
135
136
137
138
139

(int(box_x + radius), int(box_y - radius)), (@, 255, 0), 2)
cv2.putText(imgInput, "Yellow Object", (int(box_x - radius), int(box_y - radius -

10)), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (@, 255, @), 2)

return imgInput

def findColor(frame_image):
nonlocal findColorDetection, radius, box_x, box_y
if frame_image is None or frame_image.size ==
print("Error: Input image is empty in findColor function™)
return
hsv = cv2.cvtColor(frame_image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, colorLower, colorUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
if len(cnts) > @:
findColorDetection = 1
c = max(cnts, key=cv2.contourArea)
((box_x, box_y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m1e"] / M["m@@"]), int(M["m@1"] / M["mee"]))
else:
findColorDetection = @
_ flag.clear()

def run():
nonlocal CVThreading, CVMode, imgCV
while 1:
_ flag.wait()
if CVMode == 'findColor':
if imgCV is not None:
CVThreading = 1
findColor(imgCV)
CVThreading = ©
else:
pass

thread = threading.Thread(target=run)
thread.start()

mode (Camera.modeSelect, None)

while True:
img = picam2.capture_array()

if img is None:
if ImgIsNone ==
print("---------m-mmmmmama - ")
print("\@33[31merror: Unable to read camera data.\@33[em")
print("Press the keyboard keys \033[34m'Ctrl + C'\@33[@m multiple times to exit the

current program.")

print("-------- Ctrl+C quit----------- ")
ImgIsNone = 1

support@adeept.com

mailto:support@adeept.com

www.adeept.com

140
141
142
143
144
145
146
147
148
149
150

152
153
154
155
156

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
178
177
178

continue
if Camera.modeSelect == 'none':
_ flag.clear()
elif Camera.modeSelect == 'findColor':

if not CVThreading:

mode (Camera.modeSelect, img)
try:

img = elementDraw(img)
except:

pass

if cv2.imencode('.jpg', img)[@]:
yield cv2.imencode('.jpg', img)[1].tobytes()

@app.route('/")
def index():
"""Video streaming home page.

return render_template('index.html")

def gen(camera):
"""Video streaming generator function."""
yield b'--frame\r\n'
while True:
frame = camera.get_frame()
yield b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n--frame\r\n'

@app.route('/video_feed")
def video_feed():
"""Video streaming route. Put this in the src attribute of an img tag."""
return Response(gen(Camera()),
mimetype="multipart/x-mixed-replace; boundary=frame')

if __name__ == '__main__':
app.run(host='0.0.0.0', threaded=True)

Code explanation

Camera_WatchDog.py

Initialization Stage:

During the initialization phase, the code underwent a series of preparatory work, including

importing necessary libraries, creating Flask application instances, initializing camera related

settings, and defining variables for motion detection.

Loop Control Process:

support@adeept.com

mailto:support@adeept.com

SN v w.adeept.com

Continuously capture camera images in a loop, perform motion detection, and stream the

processed images to a webpage for display.

Stage 1: Stage 1: Video Frame Capture — Continuously obtain new video frames from the
Raspberry Pi camera and save them in JPEG format for subsequent processing and display in real
- time.

Stage 2: Image Data Preparation and Decoding — Move the byte - stream pointer to the start,
read data, and decode it into a color image format processable by OpenCV.

Stage 3: Motion Detection and Processing — Call the watchDog method to detect and process
motion in the current frame, marking the moving areas.

Stage 4: Image Encoding and Streaming Transmission — Re - encode the processed frame into
JPEG format and send it frame - by - frame to the web page via a generator for real - time video
playback.

Stage 5: Byte Stream Cleanup and Loop Preparation — Move the byte - stream pointer to the
beginning and clear its content to prepare for the next image capture.

Stage 6: Camera Resource Management — Close the camera resources in the finally block to

ensure proper release when the program ends and avoid resource leaks.

Camera_FindColor.py
Initialization Stage:

At this stage, the code mainly involves necessary library imports, creation of Flask application
instances, initialization of cameras, and creation of structural elements required for

morphological operations.
Loop Control Process:

Enter an infinite loop and perform the following steps in sequence to process and transmit video

frames.

Stage 1: Image capture and decoding: Use camera.captureFILE to capture images and save them
to the stream, then use cv2.imdecode to decode them into an image format that OpenCV can
process.

Stage 2: Color space conversion: Convert an image from BGR color space to HSV color space, as
color filtering is easier in HSV color space.

Stage 3: Color filtering: Define the upper and lower limits of yellow in the HSV color space, create
a mask using cv2.inRange, and filter out the yellow area.

support@adeept.com

mailto:support@adeept.com

B www.adeept.com

Stage 4: Morphological operation: Corrode and expand the mask to remove noise and fill small

holes inside the object.

Stage 5: Image encoding and transmission: Encode the processed image into JPEG format, and
return the encoded image data through the generator yield keyword for subsequent streaming

on web pages.

Stage 6: Stream cleaning: Move the pointer of the stream to the beginning and clear the content
to prepare for the next image capture.

Camera_Gesture.py
Initialization Stage:

Import multiple libraries such as io, time, cv2, etc. for functions such as input/output, time
control, image processing, etc; Create a Flask application instance app and initialize the camera in
the frames method of the Camera class, including startup, preheating, creating data storage
objects, and image processing elements.

Loop Control Process:

Enter an infinite loop and perform the following steps in sequence to process and transmit video

frames.

Stage 1: Capture and process frames: Capture images from the camera, convert and decode
them, and then transform the color space.

Stage 2: Skin color detection: Define skin color range, create and optimize masks.

Stage 3: Gesture recognition: find the contour, process the maximum contour, judge the gesture
and draw a prompt.

Stage 4: Encoding output: Encode images, output frame by frame, reset and clear storage objects.

support@adeept.com

mailto:support@adeept.com

	12.1 Overview
	12.2 Required Components
	12.3 Principle Introduction
	12.4 Demonstration
	12.5 Code
	 Code explanation

