www.adeept.com

Lesson 15 Introduction to the Principle of
TCP

15.1 Overview

In this lesson, we will delve into the principle of TCP (Transmission Control Protocol) and create a
simple remote - control system using Python on a Raspberry Pi. By the end of this lesson, you
will understand how TCP enables reliable communication between devices, and be able to
implement a basic client - server model for remote control applications.

15.2 Required Components

Raspberry Pi 1

Adeept Robot HAT V3.2 1

15.3 Principle Introduction

15.3.1 TCP Basics

TCP is a transport - layer protocol in the TCP/IP protocol suite. It provides reliable, ordered, and
error - checked delivery of data between applications running on different devices over a
network. The key features of TCP include:

Connection - Oriented: Before data transfer, TCP establishes a connection between the client
and the server. This is similar to making a phone call, where you need to dial the number (initiate

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

the connection) before you can talk. The connection - establishment process is known as the

three - way handshake.

® Step 1: SYN (Synchronize): The client sends a SYN packet to the server, indicating its intention
to establish a connection.

® Step 2: SYN - ACK (Synchronize - Acknowledge): The server responds with a SYN - ACK
packet, which is an acknowledgment of the client's SYN request and also contains the
server's own SYN request.

® Step 3: ACK (Acknowledge): The client sends an ACK packet to the server, completing the

connection establishment.

Reliable Delivery: TCP uses sequence numbers and acknowledgments to ensure that all data
packets are received correctly. Each packet sent by the sender is assigned a sequence number.
The receiver acknowledges the receipt of packets by sending ACK packets back to the sender. If a
packet is not acknowledged within a certain time (timeout), the sender will re - send the packet.

Flow Control: TCP has a mechanism to prevent the sender from overwhelming the receiver with
data. It uses a sliding window protocol, where the receiver advertises its available buffer space
(window size) to the sender. The sender can only send as much data as the receiver's available

window size.
15.3.2 Remote - Control Principle

In TCP based remote control systems, the client is the device that initiates control commands. It
sends data (control signals) to the server through a TCP connection. After receiving the data, the

server will interpret it and perform corresponding operations.

Since this is a software - based TCP communication tutorial focused on the Raspberry Pi, there is

no complex hardware wiring in the traditional sense. However, for the network connection:

Wired (Ethernet): Connect one end of the Ethernet cable to the Ethernet port of the first
Raspberry Pi (server) and the other end to the Ethernet port of the second Raspberry Pi (client). If
you are using a network switch or router, you can connect both Raspberry Pi devices to the
switch/router using Ethernet cables.

Wireless (Wi - Fi): On both Raspberry Pi devices, configure the Wi - Fi settings to connect to the
same wireless network. You can do this through the Raspberry Pi's graphical user interface (if
available) or by editing the network configuration files in the terminal.

support@adeept.com

mailto:support@adeept.com

IER v w.adeept.com

Note:This tutorial will use wireless connectivity as an example to explain.

1. Remotely log:Remote login as a server-side Raspberry Pi terminal.

2. Navigate to the Program Folder: Enter the following command in the terminal and press
Enter to access the folder where the program is located:

cd Adeept_DarkPaw-V3/Examples/09_Remote_Control/

3. View Directory Contents: Type "Is" in the terminal and press Enter. This will display all the

files in the current directory, ensuring that the "Server.py"and "Client.py"file is present:

4. Enter the command below and press Enter to start the Server.py program:

sudo python3 Server.py

5.To run the client program, you need to provide the server's IP address as a parameter. Use the

following command, replacing <server_ip> with the actual IP address of the Raspberry Pi

running the serve:

sudo python3 Client.py <server_ip>

For example, my Raspberry Pi IP address is "192.168.3.31", and the command to run the client
program is as follows:

sudo python3 Client.py 192.168.3.31

support@adeept.com

mailto:support@adeept.com

B v \ww.adeept.com

Sending Commands:

® On the Raspberry Pi client, the script will prompt you to enter a message. For example, you
can input "Hello". After inputting the message, the client will send it to the server through a TCP

connection.

Client - side:

® On the server-side terminal, you will see the received commands printed out.

Server - side:

® On the Raspberry Pi server, the script will prompt you to enter a message. For example, you
can enter "I am server". After inputting the message, the client will send it to the client through a
TCP connection.

Server - side:

® On the client terminal, you will see the received command printed out.

Client - side:

Termination:

When you want to terminate a running program, you can press the "Ctrl+C" shortcut key on the
keyboard or enter "exit" on the keyboard and click "Enter"

Complete code refer to Server.py.

support@adeept.com

mailto:support@adeept.com

BE v ww.adeept.com

01| #!/usr/bin/env/python3

02| # File name : Server.py

03| # Website : www.Adeept.com
04 | # Author : Adeept

05| # Date : 2025/04/24

06 | import socket
07 | import threading

08

09 | should_exit = False

10

11 | def handle_client(client_socket, client_address):

12 global should_exit

13 while not should_exit:

14 try:

15 client_socket.settimeout(1)

16 data = client_socket.recv(1024)

17 if data:

18 message = data.decode('utf-8")

19 print(f"Received from {client_address}: {message}")
20 else:

21 break

22 except socket.timeout:

23 continue

24 except Exception as e:

25 print(f"Error communicating with {client_address}: {e}")
26 break

27 client_socket.close()

28

29 | def send_message(client_socket):

30 global should_exit

31 while not should_exit:

32 try:

33 message = input("Enter message to send to client (type 'exit' to quit): ")
34 if message.lower() == 'exit':

35 should_exit = True

36 break

37 client_socket.send(message.encode('utf-8'))
38 except Exception as e:

39 print(f"Error sending message: {e}")

40 break

41

42 | # Create a TCP - based socket object

43 | server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
44

45 | # Bind to all available network interfaces, port number set to 8000
46 | server_address = ('0.0.0.0', 8000)

47 | server_socket.bind(server_address)

48

49 | # Start listening, maximum number of connections is 5

50 | server_socket.listen(5)

51| server_socket.settimeout(1)

52| print("Server has started and is listening for connections...")
53

54 | connected_threads = []

55

56 | while not should_exit:

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

try:

exce

exce

server_s

for thre
thre
print("S

client_socket, client_address = server_socket.accept()
print(f"Accepted connection from {client_address}")
Start the thread that receives client messages

client_thread = threading.Thread(target=handle_client, args=(client_socket, client_address))

client_thread.start()
connected_threads.append(client_thread)
Start the thread that sends messages to the client
send_thread = threading.Thread(target=send_message, args=(client_socket,))
send_thread.start()
connected_threads.append(send_thread)
pt socket.timeout:
continue
pt Exception as e:
if should_exit:

break
print(f"Error accepting connection: {e}")

ocket.close()

ad in connected_threads:

ad.join()
erver has stopped.")

Complete code refer to Client.py.

01
02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#!/usr/b
File n
Websit
Author
Date

import s
import s
import t

should_e
def rece

glob
whil

if len(s

prin

in/env/python3

ame : Client.py

e : www.Adeept.com
: Adeept
1 2025/04/24

ocket

ys

hreading

xit = False

ive_message(client_socket):
al should_exit
e not should_exit:
try:
client_socket.settimeout(1)
data = client_socket.recv(1024)
if data:
message = data.decode('utf-8")
print(f"Received from server: {message}")
else:
break
except socket.timeout:
continue
except Exception as e:
print(f"Error receiving message: {e}")
break

ys.argv) l!= 2:

t("Please enter the server's IP address when running, for example: python3 client.py

support@adeept.com

mailto:support@adeept.com

www.adeept.com

31| 192.168.1.100")
32 sys.exit(1)

34 server_ip = sys.argv[1]
35| server_port = 8000

37 | # Create a TCP - based socket object
38 | client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

39

40 try:

41 # Connect to the server

42 client_socket.connect((server_ip, server_port))

43 print(f"Connected to server {server_ip}:{server_port}")
44 # Start the thread that receives server messages

45 receive_thread = threading.Thread(target=receive_message, args=(client_socket,))
46 receive_thread.start()

47

48 while True:

49 # Get input from the keyboard

50 message = input("Please enter the message to send (type 'exit' to quit): ")
51 if message.lower() == 'exit':

52 should_exit = True

53 break

54 # Send the message to the server

55 client_socket.send(message.encode('utf-8'))

56 | except socket.error as e:

57 print(f"Error connecting to the server: {e}")

58 | finally:

59 client_socket.close()

60 if 'receive_thread' in locals():

61 receive_thread.join()

Code explanation

Server.py

Initialization Stage:
Import the Python socket module. Then, create a TCP socket using IPv4, bind it to 0.0.0.0:8080,
and set it to listen with a queue of 5 connections.

Loop Control Process:
After entering an infinite outer while True loop, the following steps are executed:

Stage 1: The outer while True loop continuously waits for new client connections. When a client
connects, server_socket.accept() returns a new client_socket for communicating with the client
and the client_address.

Stage 2: After that, two threads are created. One thread runs the handle_client function to handle
incoming messages from the client, and the other runs the send_message function to send

support@adeept.com

mailto:support@adeept.com

B v ww.adeept.com

messages to the client. This enables the server to handle both sending and receiving messages
from the client simultaneously.

Client.py

Initialization Stage:
Import the socket library, prompt the user to enter the server's IP address, and create a TCP
socket.

Loop Control Process:
After entering an infinite outer while True loop, the following steps are executed:

Stage 1: Try to connect to the server using client_socket.connect((server_ip, server_port)). If the
connection is successful, it prints a connection - established message.

Stage 2: Create a thread to run the receive_message function. This allows the client to receive
messages from the server in the background while the main thread is used for sending messages.
Stage 3: In the main while True loop, the client waits for user input. Once the user enters a
message, it is sent to the server using client_socket.send(message.encode('utf - 8")). If the user

types 'exit’, the loop breaks, and the program stops sending messages.

Stage 4: The try - except - finally block is used to handle socket - related errors. In the finally

block, the client_socket is closed to release resources.

support@adeept.com

mailto:support@adeept.com

	15.1 Overview
	15.2 Required Components
	15.3 Principle Introduction
	15.4 Wiring Diagram
	15.5 Demonstration
	15.6 Code
	 Code explanation

