

Component List

1x DC Motor

1x Servo

1x L9110 motor driver

1x LCD1602

1x ADC0832

2x 74HC595

1x Dot-matrix Display

1x 7-Segment Display

1x Light Sensor (Photoresistor)

1x 40 pin GPIO Extension Board

1x 40 pin GPIO Cable

1x Breadboard Power Supply Module

1x Active buzzer

1x Tilt Switch

2x Switch

1x RGB LED

8x Red LED

4x Green LED

4x Yellow LED

4x Blue LED

16x Resistor(220Ω)

10x Resistor(1kΩ)

5x Resistor(10kΩ)

5x Capacitor (104)

2x Capacitor (10uF)

4x Button (large)

8x Button (small)

1x Button cap (red)

1x Button cap (white)

2x Button cap (blue)

2x NPN Transistor (8050)

2x PNP Transistor (8550)

2x Potentiometer (10KΩ)

1x Breadboard

40x Male to Male Jumper Wires

20x Male to Female Jumper Wires

1x Header (40pin)

1x Band Resistor Card

1x Project Box

Preface

About this kit

This is an entry-level learning kit for Raspberry Pi. Some common electronic

components and sensors are included. Through the learning, you will get a

better understanding of Raspberry Pi, and be able to make fascinating works

based on Raspberry Pi.

About Adeept

Adeept is a technical service team of open source software and hardware.

Dedicated to applying the Internet and the latest industrial technology in open

source area, we strive to provide best hardware support and software service

for general makers and electronic enthusiasts around the world. We aim to

create infinite possibilities with sharing. No matter what field you are in, we

can lead you into the electronic world and bring your ideas into reality.

If you have any problems for learning, please contact us at support@adeept.com.

We will do our best to help you solve the problem.

support@adeept.com

Content

About the Raspberry Pi .. - 1 -

Raspberry Pi Pin Numbering Introduction ... - 2 -

Raspberry Pi GPIO Library Introduction ... - 4 -

How to use the wiringPi and the RPi.GPIO ... - 6 -

Lesson 1 Blinking LED.. - 10 -

Lesson 2 Buzzer ... - 16 -

Lesson 3 Controlling an LED with a button .. - 20 -

Lesson 4 Tilt Switch ... - 25 -

Lesson 5 LED Flowing Lights ... - 28 -

Lesson 6 Breathing LED .. - 31 -

Lesson 7 Controlling a RGB LED with PWM ... - 35 -

Lesson 8 7-segment display ... - 38 -

Lesson 9 Dot-matrix display .. - 42 -

Lesson 10 LCD1602 .. - 46 -

Lesson 11 Photoresistor ... - 50 -

Lesson 12 Controlling an LED through LAN .. - 53 -

Lesson 13 How to control a servo .. - 57 -

Lesson 14 A Simple Voltmeter ... - 60 -

Lesson 15 DC motor .. - 63 -

 - 1 -

About the Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a

computer monitor or TV, and uses a standard keyboard and mouse. It is a

capable little device that enables people of all ages to explore computing, and

to learn how to program in languages like Scratch and Python. It’s capable of

doing everything you’d expect a desktop computer to do, from browsing the

internet and playing high-definition video, to making spreadsheets,

word-processing, and playing games.

What’s more, the Raspberry Pi has the ability to interact with the outside world,

and has been used in a wide array of digital maker projects, from music

machines and parent detectors to weather stations and tweeting birdhouses

with infra-red cameras. We want to see the Raspberry Pi being used by kids all

over the world to learn to program and understand how computers work.

Link:

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

 - 2 -

Raspberry Pi Pin Numbering Introduction

There are three methods for numbering Raspberry Pi’s GPIO:

1. Numbering according to the physical location of the pins, from left to right,

top to bottom, the left is odd, the right is even.

2. Numbering according the GPIO registers of BCM2835/2836 SOC.

3. Numbering according the GPIO library wiringPi.

 - 3 -

 - 4 -

Raspberry Pi GPIO Library Introduction

Currently, there are two major GPIO libraries for Raspberry Pi, RPi.GPIO and

wiringPi.

RPi.GPIO:

RPi.GPIO is a python module to control Raspberry Pi GPIO channels. For more

information about RPi.GPIO, please visit:

https://pypi.python.org/pypi/RPi.GPIO/

For examples and documentation, please visit:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

The RPi.GPIO module is pre-installed in the official Raspbian operating system,

you can use it directly.

wiringPi:

The wiringPi is a GPIO access library written in C for the BCM2835/6 SOC used

in the Raspberry Pi. It’s released under the GNU LGPLv3 license and is usable

from C and C++ and many other languages with suitable wrappers. It’s

designed to be familiar to people who have used the Arduino “wiring” system.

For more information about wiringPi, please visit : http://wiringpi.com/

Install wiringPi:

Step 1 : Get the source code

$ git clone git://git.drogon.net/wiringPi

Step 2 : Compile and install

$ cd wiringPi

$ git pull origin

$ sudo ./build

Press Enter, the script “build” will automatically compile wiringPi source code

and then install it to the Raspberry Pi.

https://pypi.python.org/pypi/RPi.GPIO/
http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
http://wiringpi.com/

 - 5 -

Next, verify whether the wiringPi is installed successfully or not:

wiringPi includes a command-line utility gpio which can be used to program

and setup the GPIO pins. You can use this to read and write the pins and even

use it to control them from shell scripts.

You can verify whether the wiringPi is installed successfully or not by the

following commands:

$ sudo gpio -v

$ sudo gpio readall

If you can see the information shown above, it indicates that the wiringPi has

been installed successfully.

 - 6 -

How to use the wiringPi and the RPi.GPIO

Here we take a blinking LED for example to illustrate how to use the wiringPi C

library and the RPi.GPIO Python module.

Step 1 : Build the circuit according to the following schematic diagram

 Note : Resistance=220Ω

For Python user:

Step 2 : Create a file named led.py

$ sudo touch led.py

Step 3 : Open the file led.py with vim or nano

$ sudo vim led.py

Write down the following source code, then save and exit.

 - 7 -

Step 4 : Run the program

$ sudo python led.py

Press Enter, you should see that the LED is blinking. Press ’Ctrl+C’, the program

execution will be terminated.

For C language user:

Step 2 : Create a file named led.c

$ sudo touch led.c

Step 3 : Open the file led.c with vim or nano

 - 8 -

$ sudo vim led.c

Write down the following source code, then save and exit.

Step 4 : Compile the code

$ sudo gcc led.c -lwiringPi

After executing this command, you'll find a file named a.out appear in the

current directory. It is an executable program.

Step 5 : Run the program

$ sudo ./a.out

Press Enter, you should see that the LED is blinking. Press ’Ctrl+C’, the program

execution will be terminated.

 - 9 -

Resources :

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

http://wiringpi.com/reference/

NOTE:

Before learning the next courses, please copy the source code we provided to

your Raspberry Pi's /home/ directory, or you can get the source code directly

from our github repository :

C Language Source Code :

$ git clone https://github.com/adeept/Adeept_Starter_Kit_C_Code_for_RPi.git

Python Source Code :

$ git clone https://github.com/adeept/Adeept_Starter_Kit_Python_Code_for_RPi.git

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
http://wiringpi.com/reference/

 - 10 -

Lesson 1 Blinking LED

Overview

In this tutorial, we will start the journey of learning Raspberry Pi. In the first lesson, we

will learn how to control an LED.

Requirement

- 1* Raspberry Pi

- 1* 220Ω Resistor

- 1* LED

- 1* Breadboard

- 2* Jumper Wires

Principle

In this lesson, we will program the Raspberry Pi to output high(+3.3V) and low

level(0V), and then make an LED which is connected to the Raspberry Pi GPIO flicker

with a certain frequency.

1. What is LED ?

The LED is the abbreviation of light emitting diode. It is usually made of gallium

arsenide, gallium phosphide semiconductor materials. The LED has two electrodes, a

positive electrode and a negative electrode, it will light only when a forward current

passes, and it can be red, blue, green or yellow light, etc. The color of light depends on

the materials it was made.

In general, the drive current for LED is 5-20mA. Therefore, in reality it usually needs an

extra resistor for current limitation so as to protect the LED.

2. What is the resistor ?

The main function of the resistor is to limit current. In the circuit, the character ‘R’

represents resistor, and the unit of resistor is ohm(Ω).

The band resistor is used in this experiment. A band resistor is one whose surface is

coated with some particular color through which the resistance can be identified

directly.

There are two methods for connecting an LED with Raspberry Pi GPIO:

①

 - 11 -

As shown in the schematic diagram above, the anode of LED is connected to

VCC(+3.3V), and the cathode of LED is connected to the Raspberry Pi GPIO. When the

GPIO output low level, the LED is on; when the GPIO output high level, the LED is off.

②

As shown in the schematic diagram above, the anode of LED is connected to

Raspberry Pi GPIO via a resistor, and the cathode of LED is connected to the ground

(GND). When the GPIO output high level, the LED is on; when the GPIO output low

level, the LED is off.

The size of the current-limiting resistor is calculated as follows : 5~20mA current is

required to make an LED on, and the output voltage of the Raspberry Pi GPIO is 3.3V,

so we can get the resistance：

R = U / I = 3.3V / (5~20mA) = 165Ω~660Ω

In this experiment, we choose a 220ohm resistor.

The experiment is based on method ①, we select pin 11 of Raspberry Pi to control an

LED. When the pin 11 of Raspberry Pi is programmed to output low level, then the LED

will be lit, next delay for the amount of time, and then programmed the pin 11 to high

level to make the LED off. Continue to perform the above process, you can get a

blinking LED.

3. Key functions

C language user:

● int wiringPiSetup (void)

The function must be called at the start of your program or your program will fail to

work correctly. You may experience symptoms from it simply not working to segfaults

and timing issues.

Note : This function needs to be called with root privileges.

● void pinMode (int pin, int mode)

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK.

Note that only wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi

pin 7 (BCM_GPIO 4) supports CLOCK output modes.

This function has no effect when in Sys mode. If you need to change the pin mode,

then you can do it with the gpio program in a script before you start your program.

● void digitalWrite (int pin, int value)

 - 12 -

Writes the value HIGH or LOW (1 or 0) to the given pin which must have been

previously set as an output. WiringPi treats any non-zero number as HIGH, however 0

is the only representation of LOW.

● void delay (unsigned int howLong)

This causes program execution to pause for at least howLong milliseconds. Due to the

multi-tasking nature of Linux it could be longer. Note that the maximum delay is an

unsigned 32-bit integer or approximately 49 days.

Python user:

● GPIO.setmode(GPIO.BOARD)

There are two ways of numbering the IO pins on a Raspberry Pi within RPi.GPIO. The

first is using the BOARD numbering system. This refers to the pin numbers on the P1

header of the Raspberry Pi board. The advantage of using this numbering system is

that your hardware will always work, regardless of the board revision of the RPi. You

will not need to rewire your connector or change your code.

The second numbering system is the BCM(GPIO.BCM) numbers. This is a lower level

way of working - it refers to the channel numbers on the Broadcom SOC. You have to

always work with a diagram of which channel number goes to which pin on the RPi

board. Your script could break between revisions of Raspberry Pi boards.

● GPIO.setup(channel, mode)

This sets every channel you are using as an input(GPIO.IN) or an output(GPIO.OUT).

● GPIO.output(channel, state)

This sets the output state of a GPIO pin. Where channel is the channel number based

on the numbering system you have specified (BOARD or BCM). State can be 0 /

GPIO.LOW / False or 1 / GPIO.HIGH / True.

● GPIO.cleanup()

At the end any program, it is good practice to clean up any resources you might have

used. This is no different with RPi.GPIO. By returning all channels you have used back

to inputs with no pull up/down, you can avoid accidental damage to your RPi by

shorting out the pins. Note that this will only clean up GPIO channels that your script

has used. Note that GPIO.cleanup() also clears the pin numbering system in use.

Procedures

1. Build the circuit

 - 13 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/01_blinkingLed/blinkingLed.c)

#include <wiringPi.h>

#include <stdio.h>

#define LedPin 0

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiringPi failed, print message to screen

 printf("setup wiringPi failed !\n");

 return -1;

 }

 pinMode(LedPin, OUTPUT);

 while(1){

 digitalWrite(LedPin, LOW); //led on

 printf("led on...\n");

 delay(500);

 digitalWrite(LedPin, HIGH); //led off

 printf("...led off\n");

 delay(500);

 }

 return 0;

}

2.2 Compile the program

$ gcc blinkingLed.c -o led -lwiringPi

 - 14 -

Note : The parameter ‘-o’ is to specify a file name for the compiled executable

program. If you do not use this parameter, the default file name is a.out.

2.3 Run the program

$ sudo ./led

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/01_blinkingLed_1.py)

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

LedPin = 11 # pin11

def setup():

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output

 GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def loop():

 while True:

 print '...led on'

 GPIO.output(LedPin, GPIO.LOW) # led on

 time.sleep(0.5)

 print 'led off...'

 GPIO.output(LedPin, GPIO.HIGH) # led off

 time.sleep(0.5)

def destroy():

 GPIO.output(LedPin, GPIO.HIGH) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will

be executed.

 destroy()

2.2 Run the program

$ sudo python 01_blinkingLed_1.py

Press Enter, and then you can see the LED is blinking.

 - 15 -

 - 16 -

Lesson 2 Buzzer

Overview

In this lesson, we will learn how to program the Raspberry Pi to make an active buzzer

sound.

Requirement

- 1* Raspberry Pi

- 1* Active buzzer

- 1* 1 kΩ Resistor

- 1* NPN Transistor (S8050)

- 1* Breadboard

- Several Jumper wires

Principle

A buzzer or beeper is an audio signaling device. As a type of electronic buzzer with

integrated structure, which use DC power supply, are widely used in computers,

printers, photocopiers, alarms, electronic toys, automotive electronic equipments,

telephones, timers and other electronic products for voice devices. Buzzers can be

categorized as active and passive buzzers (See the following pictures).

When you place the pins of buzzers upward, you can see that two buzzers are

different, the buzzer that green circuit board exposed is the passive buzzer.

In this study, the buzzer we used is active buzzer. Active buzzer will sound as long as

the power supply. We can program to make the Raspberry Pi output alternating high

and low level, so that the buzzer sounds.

A slightly larger current is needed to make a buzzer sound. However, the output

current of Raspberry Pi GPIO is weak, so we need a transistor to drive the buzzer.

The main function of transistor is blowing up the voltage or current. The transistor can

also be used to control the circuit conduction or deadline. And the transistor is divided

into two kinds, one kind is NPN, for instance, the S8050 we provided; another kind is

PNP transistor such as the S8550 we provided. The transistor we used is as shown in

 - 17 -

below:

There are two driving circuit for the buzzer:

 Figure1 Figure2

Figure 1: Set the Raspberry Pi GPIO as a high level, the transistor S8050 will conduct,

and then the buzzer will sound; set the Raspberry Pi GPIO as low level, the transistor

S8050 will cut off, then the buzzer will stop.

Figure 2: Set the Raspberry Pi GPIO as low level, the transistor S8550 will conduct, and

the buzzer will sound; set the Raspberry Pi GPIO as a high level, the transistor S8550

will cut off, then the buzzer will stop.

Procedures

1. Build the circuit

 - 18 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/02_buzzer/buzzer.c)

2.2 Compile the program

$ gcc buzzer.c -o buzzer -lwiringPi

2.3 Run the program

$ sudo ./buzzer

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/02_buzzer.py)

2.2 Run the program

$ sudo python 02_buzzer.py

Now, you should be able to hear the sound of the buzzer.

 - 19 -

Summary

By learning this lesson, we have mastered the basic principle of the buzzer and the

transistor. We also learned how to program the Raspberry Pi and then control the

buzzer. I hope you can use what you have learned in this lesson to do some interesting

things.

 - 20 -

Lesson 3 Controlling an LED with a button

Overview

In this lesson, we will learn how to detect the status of a button, and then toggle the

status of LED based on the status of the button.

Requirement

- 1* Raspberry Pi

- 1* Button

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

1. Button

Buttons are a common component used to control electronic devices. They are usually

used as switches to connect or disconnect circuits. Although buttons come in a variety

of sizes and shapes, the one used in this experiment will be a 12mm button as shown

in the following pictures. Pins pointed out by the arrows of same color are meant to

be connected.

The button we used is a normally open type button. The two contacts of a button is in

the off state under the normal conditions, only when the button is pressed they are

closed.

The schematic diagram we used is as follows:

The button jitter must be happen in the process of using. The jitter waveform is as the

flowing:

 - 21 -

Each time you press the button, the Raspberry Pi will think you have pressed the

button many times due to the jitter of the button. We must to deal with the jitter of

buttons before we use the button. We can remove the jitter of buttons through the

software programming, besides, we can use a capacitance to remove the jitter of

buttons. Here we introduce the software method. First, we detect whether the level of

button interface is low level or high level. When the level we detected is low level,

5~10 MS delay is needed, and then detect whether the level of button interface is low

or high. If the signal is low, we can confirm that the button is pressed once. You can

also use a 0.1uF capacitance to clean up the jitter of buttons. The schematic diagram is

shown in below:

2. interrupt

Hardware interrupts were introduced as a way to reduce wasting the processor's

valuable time in polling loops, waiting for external events. They may be implemented

in hardware as a distinct system with control lines, or they may be integrated into the

memory subsystem.

3. Key functions:

C user:

● void pullUpDnControl (int pin, int pud)

This sets the pull-up or pull-down resistor mode on the given pin, which should be set

as an input. Unlike the Arduino, the BCM2835 has both pull-up a down internal

resistors. The parameter pud should be; PUD_OFF, (no pull up/down), PUD_DOWN

(pull to ground) or PUD_UP (pull to 3.3v). The internal pull up/down resistors have a

value of approximately 50KΩ on the Raspberry Pi.

This function has no effect on the Raspberry Pi’s GPIO pins when in Sys mode. If you

 - 22 -

need to activate a pull-up/pull-down, then you can do it with the gpio program in a

script before you start your program.

● int digitalRead (int pin)

This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0)

depending on the logic level at the pin.

● int wiringPiISR (int pin, int edgeType, void (*function)(void))

This function registers a function to received interrupts on the specified pin. The

edgeType parameter is either INT_EDGE_FALLING, INT_EDGE_RISING, INT_EDGE_BOTH

or INT_EDGE_SETUP. If it is INT_EDGE_SETUP then no initialisation of the pin will

happen – it’s assumed that you have already setup the pin elsewhere (e.g. with the

gpio program), but if you specify one of the other types, then the pin will be exported

and initialised as specified. This is accomplished via a suitable call to the gpio utility

program, so it need to be available.

The pin number is supplied in the current mode – native wiringPi, BCM_GPIO, physical

or Sys modes.

This function will work in any mode, and does not need root privileges to work.

The function will be called when the interrupt triggers. When it is triggered, it’s cleared

in the dispatcher before calling your function, so if a subsequent interrupt fires before

you finish your handler, then it won’t be missed. (However it can only track one more

interrupt, if more than one interrupt fires while one is being handled then they will be

ignored)

This function is run at a high priority (if the program is run using sudo, or as root) and

executes concurrently with the main program. It has full access to all the global

variables, open file handles and so on.

Python user:

● GPIO.input(channel)

This is used for reading the value of a GPIO pin. Where channel is the channel number

based on the numbering system you have specified (BOARD or BCM)). This will return

either 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

● GPIO.add_event_detect(channel, mode)

The event_detected() function is designed to be used in a loop with other things, but

unlike polling it is not going to miss the change in state of an input while the CPU is

busy working on other things. This could be useful when using something like Pygame

or PyQt where there is a main loop listening and responding to GUI events in a timely

basis.

Procedures

1. Build the circuit

 - 23 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/03_btnAndLed/btnAndLed_2.c)

2.2 Compile the program

$ gcc btnAndLed_2.c -o btnAndLed -lwiringPi

2.3 Run the program

$ sudo ./btnAndLed

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/03_btnAndLed_1.py)

2.2 Run the program

$ sudo python 03_btnAndLed_1.py

Now, when you press the button, you can see the state of the LED will be toggled.

(ON->OFF, OFF->ON).

 - 24 -

Summary

Through this lesson, you should have learned how to use the Raspberry Pi detect an

external button status, and then toggle the status of LED relying on the status of the

button detected before.

 - 25 -

Lesson 4 Tilt Switch

Overview

In this lesson, we will learn how to use the tilt switch and change the status of an LED

by changing the angle of tilt switch.

Requirement

- 1* Raspberry Pi

- 1* Tilt switch

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

The tilt switch is also called the ball switch. When the switch is tilted in the appropriate

direction, the contacts will be connected, tilting the switch the opposite direction

causes the metallic ball to move away from that set of contacts, thus breaking the

circuit.

Procedures

1. Build the circuit

 - 26 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/04_tiltSwitch/tiltSwitch.c)

2.2 Compile the program

$ gcc tiltSwitch.c -o tiltSwitch -lwiringPi

2.3 Run the program

 $ sudo ./tiltSwitch

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/04_tiltSwitch.py)

2.2 Run the program

 $ sudo python 04_tiltSwitch.py

Now, when you lean the breadboard at a certain angle, you will see the state of LED is

changed.

Summary

In this lesson, we have learned the principle and application of the tilt switch. Tilt

 - 27 -

switch is a very simple electronic component, but simple device can often make

something interesting.

 - 28 -

Lesson 5 LED Flowing Lights

Overview

In the first class, we have learned how to make an LED blink by programming the

Raspberry Pi. Today, we will use the Raspberry Pi to control 8 LEDs, so that 8 LEDs

showing the result of flowing.

Requirement

- 1* Raspberry Pi

- 8* LED

- 8* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

The principle of this experiment is very simple. It is very similar with the first class.

Key function:

● for statements

The for statement is used to repeat a block of statements enclosed in curly braces. An

increment counter is usually used to increment and terminate the loop. The for

statement is useful for any repetitive operation, and is often used in combination with

arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);

}

The initialization happens first and exactly once. Each time through the loop, the

condition is tested; if it's true, the statement block, and the increment is executed,

 - 29 -

then the condition is tested again. When the condition becomes false, the loop ends.

Procedures

1. Build the circuit

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/05_flowingLed/flowingLed.c)

2.2 Compile the program

$ gcc flowingLed.c -o flowingLed -lwiringPi

Run the program

 $ sudo ./flowingLed

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/05_flowingLed.py)

2.2 Run the program

 $ sudo python 05_flowingLed.py

 - 30 -

Now, you should see 8 LEDs are lit in sequence from the right green one to the left,

next from the left to the right one. And then repeat the above phenomenon.

Summary

Through this simple and fun experiment, we have learned more skilled programming

about the Raspberry Pi. In addition, you can also modify the circuit and code we

provided to achieve even more dazzling effect.

 - 31 -

Lesson 6 Breathing LED

Overview

In this lesson, we will learn how to program the Raspberry Pi to generate PWM signal.

And use the PWM square-wave signal control an LED gradually becomes brighter and

then gradually becomes dark like the animal's breath.

Requirement

- 1* Raspberry Pi

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital

means. Digital control is used to create a square wave, a signal switched between on

and off. This on-off pattern can simulate voltages in between full on (5 Volts) and off (0

Volts) by changing the portion of the time the signal spends on versus the time that

the signal spends off. The duration of "on time" is called the pulse width. To get

varying analog values, you change, or modulate, that pulse width. If you repeat this

on-off pattern fast enough with an LED for example, the result is as if the signal is a

steady voltage between 0 and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This duration or

period is the inverse of the PWM frequency. In other words, with Raspberry Pi's PWM

frequency at about 500Hz, the green lines would measure 2 milliseconds each. A call

to pwmWrite() is on a scale of 0-1023, such that pwmWrite(1023) requests a 100%

duty cycle (always on), and pwmWrite(511) is a 50% duty cycle (on half the time) for

example.

 - 32 -

Key function:

C user:

● pwmWrite(int pin, int value)

Writes the value to the PWM register for the given pin. The Raspberry Pi has one

on-board PWM pin, pin 1 (BMC_GPIO 18, Phys 12) and the range is 0-1024. Other

PWM devices may have other PWM ranges.

This function is not able to control the Pi’s on-board PWM when in Sys mode.

Python user:

● p = GPIO.PWM(channel, frequency)

This is used for creating a PWM.

● p.start(dc)

Start the pwm you have created.

● p.ChangeFrequency(freq)

Change the frequency of pwm.

● p.stop()

Stop the pwm.

 - 33 -

Procedures

1. Build the circuit

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/06_breathingLed/breathingLed.c)

2.2 Compile the program

$ gcc breathingLed.c -o breathingLed -lwiringPi

2.3 Run the program

 $ sudo ./breathingLed

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/06_breathingLed.py)

2.2 Run the program

 $ sudo python 06_breathingLed.py

 - 34 -

Now, you should see the LED gradually from dark to brighter, and then from brighter

to dark, continuing to repeat the process, its rhythm like the animal's breathing.

Summary

By learning this lesson, I believe that you have understood the basic principles of the

PWM, and mastered the PWM programming on the Raspberry Pi platform.

 - 35 -

Lesson 7 Controlling a RGB LED with PWM

Overview

In this lesson, we will program the Raspberry Pi for RGB LED control, and make RGB

LED emits a variety of colors of light.

Requirement

- 1* Raspberry Pi

- 1* RGB LED

- 3* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

RGB LEDs consist of three LEDs, one red, one green and one blue. These three colored

LEDs are capable of producing any color. Tri-color LEDs with red, green, and blue

emitters, in general using a four-wire connection with one common lead (anode or

cathode). These LEDs can have either common anode or common cathode leads.

What we used in this experiment is the common anode RGB LED. The longest pin is

the common anode of three LEDs. The pin is connected to the +3.3V pin of the

Raspberry Pi, and the three remaining pins are connected to the Raspberry Pi’s pin11,

pin12, pin13 through a current limiting resistor.

In this way, we can control the color of RGB LED by 3-channel PWM signal.

Key function:

● int softPwmCreate (int pin, int initialValue, int pwmRange)

This creates a software controlled PWM pin. You can use any GPIO pin and the pin

numbering will be that of the wiringPiSetup() function you used. Use 100 for the

pwmRange, then the value can be anything from 0 (off) to 100 (fully on) for the given

pin.

The return value is 0 for success. Anything else and you should check the global errno

variable to see what went wrong.

 - 36 -

● void softPwmWrite (int pin, int value)

This updates the PWM value on the given pin. The value is checked to be in-range and

pins that haven’t previously been initialised via softPwmCreate will be silently ignored.

Procedures

1. Build the circuit

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/07_rgbLed/rgbLed.c)

2.2 Compile the program

$ gcc rgbLed.c -o rgbLed -lwiringPi -lpthread

NOTE: The compiler option ‘-lpthread’ is essential, because the implementation of

softPwm is based on linux multithreading.

2.3 Run the program

 $ sudo ./rgbLed

Python user:

2.1 Edit and save the code with vim or nano.

 - 37 -

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/07_rgbLed.py)

2.2 Run the program

$ sudo python 07_rgbLedLed.py

Now, you can see that the RGB LED emitting red, green, blue, yellow, white and purple

light, then the RGB LED will be off, each state continues 1s, after repeating the above

procedure.

Summary

By learning this lesson, I believe that you have already known the principle and the

programming of RGB LED. I hope you can use your imagination to achieve even more

cool ideas based on this lesson.

 - 38 -

Lesson 8 7-segment display

Overview

In this lesson, we will program the Raspberry Pi to achieve the controlling of segment

display.

Requirement

- 1* Raspberry Pi

- 1* 220Ω Resistor

- 1* 7-Segment display

- 1* Breadboard

- Several Jumper wires

Principle

The seven-segment display is a form of electronic display device for displaying

decimal numerals that is an alternative to the more complex dot matrix displays.

Seven-segment displays are widely used in digital clocks, electronic meters, basic

calculators, and other electronic devices that display numerical information.

The seven-segment display is an 8-shaped LED display device composed of eight LEDs

(including a decimal point), these segments respectively named a, b, c, d, e, f, g, dp.

The segment display can be divided into common anode and common cathode

segment display by internal connections.

When using a common anode LED, the common anode should to be connected to the

power supply (VCC); when using a common cathode LED, the common cathode should be

connected to the ground (GND).

Each segment of a segment display is composed of LED, so a resistor is needed for

protecting the LED.

 - 39 -

A 7-segment display has seven segments for displaying a figure and a segment for

displaying a decimal point. If you want to display a number ‘1’, you should only light the

segment b and c.

Key function:

● void digitalWriteByte (int value)

This writes the 8-bit byte supplied to the first 8 GPIO pins. It’s the fastest way to set all 8

bits at once to a particular value, although it still takes two write operations to the Pi’s

GPIO hardware.

Procedures

1. Build the circuit

2. Program

 - 40 -

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/08_segment/segment.c)

2.2 Compile the program

 $ gcc segment.c -o segment -lwiringPi

2.3 Run the program

$ sudo ./segment

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/08_segment.py)

2.2 Run the program

$ sudo python 08_segment.py

Now, you should see the number 0~9, a~F are displayed on the segment display.

Summary

 - 41 -

Through this lesson, we have learned the principle and programming of segment

display. I hope you can combine the former course to modify the code we provided in

this lesson to achieve cooler originality.

 - 42 -

Lesson 9 Dot-matrix display

Overview

In this lesson, we will program to control a 8*8 dot-matrix display to realize the display

of graphical and digital we want.

Requirement

- 1* Raspberry Pi

- 1* 8*8 Dot-matrix display

- 2* 74HC595

- 1* Breadboard

- Several Jumper wires

Principle

1. Dot-matrix display

A dot-matrix display is a display device used to display information on machines,

clocks, railway departure indicators and many other devices requiring a simple display

device of limited resolution.

The display consists of a dot-matrix of lights or mechanical indicators arranged in a

rectangular configuration (other shapes are also possible, although not common) such

that by switching on or off selected lights, text or graphics can be displayed. A

dot-matrix controller converts instructions from a processor into signals which turns

on or off lights in the matrix so that the required display is produced.

The internal structure and appearance of the dot-matrix display is as shown in below:

A 8*8 dot-matrix display consists of 64 LEDs, and each LED is placed at the intersection

of the lines and columns. When the corresponding row is set as high level and the

column is set as low level, then the LED will be lit.

 - 43 -

A certain drive current is required for the dot-matrix display. In addition, more pins are

needed for connecting dot-matrix display with controller. Thus, to save the Raspberry

Pi’s GPIO, driver IC 74HC595 is used in this experiment.

2. 74HC595

The 74HC595 is an 8-stage serial shift register with a storage register and 3-state

outputs. The shift register and storage register have separate clocks. Data is shifted on

the positive-going transitions of the SH_CP input. The data in each register is

transferred to the storage register on a positive-going transition of the ST_CP input.

The shift register has a serial input (DS) and a serial standard output (Q7’) for

cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift

register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in

the storage register appears at the output whenever the output enable input (OE) is

LOW.

In this experiment, only 3 pins of Raspberry Pi are used for controlling a dot-matrix

display due to the existence of 74HC595.

The flowing is the function of each pin:

DS: Serial data input

Q0-Q7: 8-bit parallel data output

Q7’ : Series data output pin, always connected to DS pin of the next 74HC595

OE: Output enable pin, effective at low level, connected to the ground directly

MR: Reset pin, effective at low level, directly connected to 5V high level in practical

applications

SH_CP: Shift register clock input

ST_CP: storage register clock input

Procedures

1. Build the circuit (Make sure that the circuit connection is correct and then power,

otherwise it may cause the chips to burn.)

 - 44 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/09_ledMatrix/ledMatrix.c)

2.2 Compile the program

$ gcc ledMatrix.c -o ledMatrix -lwiringPi

2.3 Run the program

 $ sudo ./ledMatrix

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/09_ledMatrix.py)

2.2 Run the program

 $ sudo python 09_ledMatrix.py

Now, you can see a rolling “Adeept” should be displayed on the dot-matrix display.

 - 45 -

Summary

In this experiment, we have not only learned how to operate a dot-matrix display to

display numbers and letters, but also learned the basic usage of 74HC595, then you

can try operating the dot-matrix display to show other images.

 - 46 -

Lesson 10 LCD1602

Overview

In this lesson, we will learn how to use a character display device—LCD1602 on the

Raspberry Pi platform. First, we make the LCD1602 display a string "Hello Geeks!"

scrolling, then display“Adeept”and“www.adeept.com”static.

Requirement

- 1* Raspberry Pi

- 1* LCD1602

- 1* 10KΩ Potentiometer

- 1* Breadboard

- Several Jumper wires

Principle

LCD1602 is a kind of character LCD display. The LCD has a parallel interface, meaning

that the microcontroller has to manipulate several interface pins at once to control the

display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're writing

data to. You can select either the data register, which holds what goes on the screen,

or an instruction register, which is where the LCD's controller looks for instructions on

what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The status of these pins (high or low) are the bits that you're

writing to a register when you write, or the values when you read.

● There's also a display contrast pin (Vo), power supply pins (+5V and Gnd) and LED

Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD, control the display

contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the image of

what you want to display into the data registers, then putting instructions in the

instruction register. The wiringPiDev Library simplifies this for you, so you don't need

to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit

mode requires six I/O pins from the Raspberry Pi, while the 8-bit mode requires 10

pins. For displaying text on the screen, you can do most everything in 4-bit mode, so

example shows how to control a 2x16 LCD in 4-bit mode.

A potentiometer, informally a pot, is a three-terminal resistor with a sliding or rotating

contact that forms an adjustable voltage divider. If only two terminals are used, one

end and the wiper, it acts as a variable resistor or rheostat.

http://www.adeept.com/
query:potentiometer

 - 47 -

Key function:

● int lcdInit (int rows, int cols, int bits, int rs, int strb, int d0, int d1, int d2, int d3, int

d4, int d5, int d6, int d7)

This is the main initialisation function and must be called before you use any other

LCD functions.

Rows and cols are the rows and columns on the display (e.g. 2, 16 or 4,20). Bits is the

number of bits wide on the interface (4 or 8). The rs and strb represent the pin

numbers of the displays RS pin and Strobe (E) pin. The parameters d0 through d7 are

the pin numbers of the 8 data pins connected from the Pi to the display. Only the first

4 are used if you are running the display in 4-bit mode.

The return value is the ‘handle’ to be used for all subsequent calls to the lcd library

when dealing with that LCD, or -1 to indicate a fault. (Usually incorrect parameters)

● lcdPosition (int handle, int x, int y)

Set the position of the cursor for subsequent text entry. x is the column and 0 is the

left-most edge. y is the line and 0 is the top line.

● lcdPuts (int handle, const char *string)

● lcdPrintf (int handle, const char *message, …)

● lcdPutchar (int handle, unsigned char data)

These output a single ASCII character, a string or a formatted string using the usual

printf formatting commands.

At the moment, there is no clever scrolling of the screen, but long lines will wrap to

the next line, if necessary.

Procedures

1. Build the circuit

 - 48 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/10_lcd1602/lcd1602_2.c)

2.2 Compile the program

$ gcc lcd1602_2.c -o lcd1602_2 -lwiringPi -lwiringPiDev

2.3 Run the program

 $ sudo ./lcd1602_2

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/10_lcd1602.py)

2.2 Run the program

 $ sudo python 10_lcd1602.py

Now, you can see the string "Hello Geeks!" is shown on the LCD1602 scrolling, and

 - 49 -

then the string "Adeept" and "www.adeept.com" is displayed on the LCD1602 static.

Summary

I believe that you have already mastered the driver of LCD1602 through this lesson. I

hope you can make something more interesting base on this lesson and the previous

lesson learned.

http://www.adeept.com/

 - 50 -

Lesson 11 Photoresistor

Overview

In this lesson, we will learn how to measure the light intensity by photoresistor and

make the measurement result displayed in the screen.

Requirement

- 1* Raspberry Pi

- 1* ADC0832

- 1* Photoresistor

- 1* 10KΩ Resistor

- 1* Breadboard

- Several Jumper wires

Principle

A photoresistor is a light-controlled variable resistor. The resistance of a photoresistor

decreases with the increasing incident light intensity; in other words, it exhibits

photoconductivity. A photoresistor can be applied in light-sensitive detector circuits.

A photoresistor is made of a high resistance semiconductor. In the dark, a

photoresistor can have a resistance as high as a few megohms (MΩ), while in the light,

a photoresistor can have a resistance as low as a few hundred ohms. If incident light

on a photoresistor exceeds a certain frequency, photons absorbed by the

semiconductor give bound electrons enough energy to jump into the conduction

band. The resulting free electrons (and their hole partners) conduct electricity, thereby

lowering resistance. The resistance range and sensitivity of a photoresistor can

substantially differ among dissimilar devices. Moreover, unique photoresistors may

react substantially differently to photons within certain wavelength bands.

The schematic diagram of this experiment is shown below:

With the increase of the light intensity, the resistance of photoresistor will be decreased.

The voltage of GPIO port in the above figure will become high.

Procedures

1. Build the circuit

 - 51 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/11_photoresistance/photoresistor.c)

2.2 Compile the program

$ gcc photoresistor.c -o photoresistor -lwiringPi

2.3 Run the program

$ sudo ./photoresistor

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/11_photoresistor.py)

2.2 Run the program

$ sudo python 11_photoresistor.py

Now, when you try to block the light towards the photoresistor, you will find that the

value displayed in the screen will be reduced. Otherwise, when you use a powerful light

to irradiate the photoresistor, the value displayed will be increased.

 - 52 -

Summary

By learning this lesson, we have learned how to detect surrounding light intensity with

the photoresistor. You can play your own wisdom, and make more originality based on

this experiment and the former experiment.

 - 53 -

Lesson 12 Controlling an LED through LAN

Overview

In this lesson, we will introduce TCP and socket, and then programming to control an

LED through the local area network(LAN).

Requirement

- 1* Raspberry Pi

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

1. TCP

The Transmission Control Protocol (TCP) is a core protocol of the Internet Protocol

Suite. It originated in the initial network implementation in which it complemented the

Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP.

TCP provides reliable, ordered, and error-checked delivery of a stream of octets

between applications running on hosts communicating over an IP network. TCP is the

protocol that major Internet applications such as the World Wide Web, email, remote

administration and file transfer rely on. Applications that do not require reliable data

stream service may use the User Datagram Protocol (UDP), which provides a

connectionless datagram service that emphasizes reduced latency over reliability.

2. Socket

A network socket is an endpoint of an inter-process communication across a

computer network. Today, most communication between computers is based on the

Internet Protocol; therefore most network sockets are Internet sockets.

A socket API is an application programming interface (API), usually provided by the

operating system, that allows application programs to control and use network

sockets. Internet socket APIs are usually based on the Berkeley sockets standard.

A socket address is the combination of an IP address and a port number, much like

one end of a telephone connection is the combination of a phone number and a

particular extension. Based on this address, internet sockets deliver incoming data

packets to the appropriate application process or thread.

Several Internet socket types are available:

1. Datagram sockets, also known as connectionless sockets, which use User Datagram

Protocol (UDP).

2. Stream sockets, also known as connection-oriented sockets, which use Transmission

 - 54 -

Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP).

3. Raw sockets (or Raw IP sockets), typically available in routers and other network

equipment. Here the transport layer is bypassed, and the packet headers are made

accessible to the application.

In this experiment, our program is based on stream socket, and the program is divided

into two parts, the client and the server. The server routine is run on the Raspberry Pi,

and the client routine is run on the PC. So you can send command to the server

through the client, and then control the LED connected to the Raspberry Pi.

Procedures

1. Build the circuit

2. Program

C user:

2.1 Edit and save the server code with vim or nano on the Raspberry Pi.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/12_TCPCtrlLed/ledServer.c)

2.2 Compile the program(On Raspberry Pi)

$ gcc ledServer.c -o ledServer –lwiringPi

2.3 Edit and save the client code with vim or nano on the PC.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/12_TCPCtrlLed/client.c)

 - 55 -

2.4 Compile the program(On Linux PC)

$ gcc ledClient.c -o ledClient

2.5 Run the program

$ sudo ./ledServer (On Raspberry Pi)

$./ledClient 192.168.1.188 (On PC, Modify the IP Address to your Raspberry Pi’s IP

Address)

Now, input “ON” in the terminal and then press Enter, you will find the LED connected

to the Raspberry Pi is on, input “OFF”, the LED is off.

Python user:

2.1 Edit and save the server code with vim or nano on the Raspberry Pi.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/12_TCPCtrlLed/ledServer.py)

2.2 Edit and save the client code with vim or nano on the PC.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/12_TCPCtrlLed/ledClient.py)

2.3 Run the program

 $ sudo python ledServer.py (On Raspberry Pi)

 $ python ledClient.py (On PC)

Now, input “ON” in the terminal and then press Enter, you will find the LED connected

to the Raspberry Pi is on, input “OFF”, the LED is off.

 - 56 -

Summary

By learning this lesson, you should have understood the basic principles of

inter-computer communication. I hope this lesson will help you open the door to learn

IoT(Internet of Things).

 - 57 -

Lesson 13 How to control a servo

Overview

In this lesson, we will introduce a new electronic device (Servo) to you, and tell you

how to control it with Raspberry Pi.

Requirement

- 1* Raspberry Pi

- 1* Servo

- 1* Breadboard

- Several Jumper wires

Principle

Servo is a type of geared motor that can only rotate 180 degrees. It is controlled by

sending pulses signal from your microcontroller. These pulses tell the servo what

position it should move to.

Servo consists of shell, circuit board, non-core motor, gear and location detection. Its

working principle is as follow: Raspberry Pi sends PWM signal to servo motor, and

then this signal is processed by IC on circuit board to calculate rotation direction to

drive motor, and then this driving power is transferred to swing arm by reduction gear.

At the same time, position detector returns location signal to judge whether set

location is reached or not.

The relationship between the rotation angle of the servo and pulse width as shown

below:

Procedures

1. Build the circuit

 - 58 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/13_servo/servo.c)

2.2 Compile the program

$ gcc servo.c -o servo -lwiringPi

2.3 Run the program

 $ sudo ./servo

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/13_servo.py)

2.2 Run the program

$ sudo python 13_servo.py

Press Enter, you should see the servo motor rotate 180 degrees. And then rotate in

opposite direction.

 - 59 -

 - 60 -

Lesson 14 A Simple Voltmeter

Overview

In this lesson, we will make a simple voltmeter with Raspberry Pi and LCD1602, the

range of this voltmeter is 0~5V. Then, we will measure the voltage of the

potentiometer’s adjustment end with the simple voltmeter and display it on the

LCD1602.

Requirement

- 1* Raspberry Pi

- 1* LCD1602

- 2* Potentiometer

- 1* Breadboard

- Several Jumper wires

Principle

The basic principle of this experiment: Converting the analog voltage that the

ADC0832 collected to digital quantity through programming, then display the voltage

on the LCD1602.

Procedures

1. Build the circuit

 - 61 -

2. Program

2.1 Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/14_voltage/voltmeter.c)

2.2 Compile the program

$ gcc voltmeter.c -o voltmeter -lwiringPi

2.3 Run the program

 $ sudo ./voltmeter

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/14_voltmeter.py)

2.2 Run the program

 $ sudo python 14_voltmeter.py

Now, when you turning the shaft of the potentiometer, you will see the voltage

displayed on the LCD1602 will be changed.

Summary

 - 62 -

The substance of voltmeter is reading analog voltage which input to ADC. Through

this course, I believe that you have mastered how to read analog value and how to

make a simple voltmeter with Raspberry Pi.

 - 63 -

Lesson 15 DC motor

Overview

In this comprehensive experiment, we will learn how to control the state of DC motor

with Raspberry Pi. The state of DC motor includes its forward, reverse, acceleration,

deceleration and stop.

Requirement

- 1* Raspberry Pi

- 1* L9110 DC Motor driver

- 1* DC motor

- 4* Button

- 1* LED

- 1* 220Ω Resistor

- 1* Capacitor(104, 0.1uF)

- 1* Breadboard

- Several Jumper wires

Principle

1. DC motor

A DC motor is any of a class of electrical machines that converts direct current

electrical power into mechanical power. The most common types rely on the forces

produced by magnetic fields. Nearly all types of DC motors have some internal

mechanism, either electromechanical or electronic, to periodically change the

direction of current flow in part of the motor. Most types produce rotary motion; a

linear motor directly produces force and motion in a straight line.

DC motors were the first type widely used, since they could be powered from existing

direct-current lighting power distribution systems. A DC motor's speed can be

controlled over a wide range, using either a variable supply voltage or by changing

the strength of current in its field windings. Small DC motors are used in tools, toys,

and appliances. The universal motor can operate on direct current but is a lightweight

motor used for portable power tools and appliances.

 - 64 -

2. L9110

L9110 is a driver chip which is used to control and drive motor. The chip has two

TTL/CMOS compatible input terminals, and possesses the property of

anti-interference: it has high current driving capability, two output terminals that can

directly drive DC motor, each output port can provide 750~800mA dynamic current,

and its peak current can reach 1.5~2.0A; L9110 is widely applied to various motor

drives, such as toy cars, stepper motor, power switches and other electric circuits.

OA, OB: These are used to connect the DC motor.

VCC: Power supply (+5V)

GND: The cathode of the power supply (Ground).

IA, IB: The input terminal of drive signal.

Procedures

1. Build the circuit

javascript:void(0);
javascript:void(0);

 - 65 -

2. Program

C user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_C_Code_for_RPi/15_motor/motor.c)

2.2 Compile the program

$ gcc motor.c -o motor -lwiringPi

2.3 Run the program

 $ sudo ./motor

Python user:

2.1 Edit and save the code with vim or nano.

(Code path: /home/Adeept_Starter_Kit_Python_Code_for_RPi/15_motor.py)

2.2 Run the program

 $ sudo python 15_motor.py

Press the button 1 to stop or run the DC motor; press the button 2 to forward or

reverse the DC motor; Press the button 3 to accelerate the DC motor; Press the button

4 to decelerate the DC motor. When the motor is running, the LED will be lit up.

Otherwise, the LED will be extinguished.

 - 66 -

Summary

I think you must have grasped the basic theory and programming of the DC motor

after studying this experiment. You not only can forward and reverse it, but also can

regulate its speed. Besides, you can do some interesting applications with the

combination of this course and your prior knowledge.

