

Preface

Adeept is a technical service team of open source software and hardware.

Dedicated to applying the Internet and the latest industrial technology in open

source area, we strive to provide best hardware support and software service for

general makers and electronic enthusiasts around the world. We aim to create

infinite possibilities with sharing. No matter what field you are in, we can lead you

into the electronic world and bring your ideas into reality.

This is an entry-level learning kit for Arduino. Some common electronic

components and sensors are included. Through the learning, you will get a better

understanding of Arduino, and be able to make fascinating works based on

Arduino.

If you have any problems for learning, please contact us at support@adeept.com.

We will do our best to help you solve the problem.

support@adeept.com

Component List

1x Adeept UNO Board(Arduino UNO)

1x DC Motor

1x L9110 motor driver

1x LCD1602

1x Dot-matrix Display

1x 7-Segment Display

1x NE555 timer

2x 74HC595

1x Active buzzer

1x Photoresistance

1x Tilt Switch

2x Switch

1x RGB LED

8x Red LED

4x Green LED

4x Yellow LED

4x Blue LED

16x Resistor(220Ω)

10x Resistor(1 kΩ)

5x Resistor(10 kΩ)

5x Capacitor(104)

2x Capacitor(10uF)

4x Button(large)

8x Button(small)

1x Button cap(red)

1x Button cap(white)

2x Button cap(blue)

2x NPN Transistor(8050)

2x PNP Transistor(8550)

2x Potentiometer(10KΩ)

1x A battery holder

1x Breadboard

1x USB Cable

40x Male to Male Jumper Wires

8x Male to Female Jumper Wires

1x Header(40pin)

1x Band Resistor Card

1x Project Box

Content

About Arduino .. - 1 -

Lesson 1 Blinking LED ... - 2 -

Lesson 2 Buzzer .. - 6 -

Lesson 3 Controlling an LED with a button .. - 10 -

Lesson 4 Tilt Switch ... - 15 -

Lesson 5 LED Flowing Lights .. - 18 -

Lesson 6 Breathing LED ... - 21 -

Lesson 7 Controlling a RGB LED by PWM ... - 25 -

Lesson 8 7-segment display ... - 28 -

Lesson 9 Dot-matrix display ... - 32 -

Lesson 10 LCD1602 ... - 37 -

Lesson 11 Photoresistor ... - 41 -

Lesson 12 Serial Port... - 44 -

Lesson 13 Frequency meter ... - 49 -

Lesson 14 A Simple Voltmeter ... - 54 -

Lesson 15 DC motor .. - 57 -

 - 1 -

About Arduino

What is Arduino?

Arduino is an open-source electronics platform based on easy-to-use

hardware and software. It's intended for anyone making interactive projects.

ARDUINO BOARD

Arduino senses the environment by receiving inputs from many sensors, and

affects its surroundings by controlling lights, motors, and other actuators.

ARDUINO SOFTWARE

You can tell your Arduino what to do by writing code in the Arduino

programming language and using the Arduino development environment.

Before the development of Arduino program, the first thing you have to do is to

install Arduino IDE software. The software provides you with the basic

development environment that is required for developing Arduino program.

You need the following URL to download Arduino IDE:

http://www.arduino.cc/en/Main/Software

For different operating system platforms, the way of using Arduino IDE is

different. Please refer to the following links:

Windows User：http://www.arduino.cc/en/Guide/Windows

Mac OS X User：http://www.arduino.cc/en/Guide/MacOSX

Linux User：http://playground.arduino.cc/Learning/Linux

For more detailed information about Arduino IDE, please refer to the following

link:

http://www.arduino.cc/en/Guide/HomePage

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/Windows
http://www.arduino.cc/en/Guide/MacOSX
http://playground.arduino.cc/Learning/Linux
http://www.arduino.cc/en/Guide/HomePage

 - 2 -

Lesson 1 Blinking LED

Overview

In this tutorial, we will start the journey of learning Arduino UNO. In the first

lesson, we will learn how to make a LED blinking.

Requirement

- 1* Arduino UNO

- 1* USB Cable

- 1* 220Ω Resistor

- 1* LED

- 1* Breadboard

- 2* Jumper Wires

Principle

In this lesson, we will program the Arduino's GPIO output high(+5V) and low

level(0V), and then make the LED which is connected to the Arduino’s GPIO

flicker with a certain frequency.

1. What is the LED?

The LED is the abbreviation of light emitting diode. It is usually made of

gallium arsenide, gallium phosphide semiconductor materials. The LED has

two electrodes, a positive electrode and a negative electrode, it will light only

when a forward current passes, and it can be red, blue, green or yellow light,

etc. The color of light depends on the materials it was made.

In general, the drive current for LED is 5-20mA. Therefore, in reality it usually

needs an extra resistor for current limitation so as to protect the LED.

2. What is the resistor?

The main function of the resistor is to limit current. In the circuit, the character

‘R’ represents resistor, and the unit of resistor is ohm(Ω).

The band resistor is used in this experiment. A band resistor is one whose

surface is coated with some particular color through which the resistance can

be identified directly.

There are two methods for connecting LED to Arduino’s GPIO:

①

 - 3 -

As shown in the schematic diagram above, the anode of LED is connected to

Arduino’s GPIO via a resistor, and the cathode of LED is connected to the

ground(GND). When the GPIO output high level, the LED is on; when the GPIO

output low level, the LED is off.

The size of the current-limiting resistor is calculated as follows: 5~20mA

current is required to make an LED on, and the out put voltage of the Arduino

UNO’s GPIO is 5V, so we can get the resistance：

R = U / I = 5V / (5~20mA) = 250Ω~1KΩ

Since the LED has a certain resistance, thus we choose a 220ohm resistor.

②

As shown in the schematic diagram above, the anode of LED is connected to

VCC(+5V), and the cathode of LED is connected to the Arduino’s GPIO. When

the GPIO output low level, the LED is on; when the GPIO output high level, the

LED is off.

The experiment is based on method ①, we select Arduino's D8 pin to control

the LED. When the Arduino’s D8 pin is programmed to output high level, then

the LED will be on, next delay for the amount of time, and then programmed

the D8 pin to low level to make the LED off. Continue to perform the above

process, you can get a blinking LED.

3. Key functions:

● setup()

The setup() function is called when a sketch starts. Use it to initialize variables,

pin modes, start using libraries, etc. The setup function will only run once,

after each powerup or reset of the Arduino board.

●loop()

After creating a setup() function, which initializes and sets the initial values,

the loop() function does precisely what its name suggests, and loops

 - 4 -

consecutively, allowing your program to change and respond. Use it to actively

control the Arduino board.

●pinMode()

Configures the specified pin to behave either as an input or an output.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with

the mode INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the

internal pullups.

●digitalWrite()

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(), its voltage will be

set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V

(ground) for LOW.

If the pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable

(LOW) the internal pullup on the input pin. It is recommended to set the

pinMode() to INPUT_PULLUP to enable the internal pull-up resistor.

●delay()

Pauses the program for the amount of time (in miliseconds) specified as

parameter. (There are 1000 milliseconds in a second.)

Procedures

1. Build the circuit

 - 5 -

2. Program

/***

File name: 01_blinkingLed.ino

Description: Lit LED, let LED blinks.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Tom

Date: 2015/05/02

***/

int ledPin=8; //definition digital 8 pins as pin to control the LED

void setup()

{

 pinMode(ledPin,OUTPUT); //Set the digital 8 port mode, OUTPUT:

Output mode

}

void loop()

{

 digitalWrite(ledPin,HIGH); //HIGH is set to about 5V PIN8

 delay(1000); //Set the delay time, 1000 = 1S

 digitalWrite(ledPin,LOW); //LOW is set to about 5V PIN8

 delay(1000); //Set the delay time, 1000 = 1S

}

3. Compile the program and upload to Arduino UNO board

Now, you can see the LED is blinking.

 - 6 -

Lesson 2 Buzzer

Overview

In this lesson, we will learn how to program the Arduino to make an active

buzzer sound.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* Active buzzer

- 1* 1 kΩ Resistor

- 1* NPN Transistor (S8050)

- 1* Breadboard

- Several Jumper wires

Principle

A buzzer or beeper is an audio signaling device. As a type of electronic buzzer

with integrated structure, which use DC power supply, are widely used in

computers, printers, photocopiers, alarms, electronic toys, automotive

electronic equipments, telephones, timers and other electronic products for

voice devices. Buzzers can be categorized as active and passive buzzers (See

the following pictures).

When you place the pins of buzzers upward, you can see that two buzzers are

different, the buzzer that green circuit board exposed is the passive buzzer.

In this study, the buzzer we used is active buzzer. Active buzzer will sound as

long as the power supply. We can program to make the Arduino output

alternating high and low level, so that the buzzer sounds.

 - 7 -

A slightly larger current is needed to make a buzzer sound. However, the

output current of Arduino’s GPIO is weak, so we need a transistor to drive the

buzzer.

The main function of transistor is blowing up the voltage or current. The

transistor can also be used to control the circuit conduction or deadline. And

the transistor is divided into two kinds, one kind is NPN, for instance, the

S8050 we provided; another kind is PNP transistor such as the S8550 we

provided. The transistor we used is as shown in below:

There are two driving circuit for the buzzer:

 Figure1 Figure2

Figure 1: Set the Arduino GPIO as a high level, the transistor S8050 will

conduct, and then the buzzer will sound; set the Arduino GPIO as low level, the

transistor S8050 will cut off, then the buzzer will stop.

 - 8 -

Figure 2: Set the Arduino GPIO as low level, the transistor S8550 will conduct,

and the buzzer will sound; set the Arduino GPIO as a high level, the transistor

S8550 will cut off, then the buzzer will stop.

Procedures

1. Build the circuit

2. Program

3. Compile the program and upload to Arduino UNO board

Now, you should be able to hear the sound of the buzzer.

 - 9 -

Summary

By learning this lesson, we have mastered the basic principle of the buzzer and

the transistor. We also learned how to program the Arduino and then control

the buzzer. I hope you can use what you have learned in this lesson to do some

interesting things.

 - 10 -

Lesson 3 Controlling an LED with a button

Overview

In this lesson, we will learn how to detect the state of a button, and then toggle

the state of LED based on the state of the button.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* Button

- 1* LED

- 1* 10KΩ Resistor

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

1. Button

Buttons are a common component used to control electronic devices. They are

usually used as switches to connect or disconnect circuits. Although buttons

come in a variety of sizes and shapes, the one used in this experiment will be

a 12mm button as shown in the following pictures. Pins pointed out by the

arrows of same color are meant to be connected.

The button we used is a normally open type button. The two contacts of a

button is in the off state under the normal conditions, only when the button is

pressed they are closed.

The schematic diagram we used is as follows:

 - 11 -

The button jitter must be happen in the process of using. The jitter waveform

is as the flowing picture:

Each time you press the button, the Arduino will think you have pressed the

button many times due to the jitter of the button.We must to deal with the

jitter of buttons before we use the button. We can through the software

programming method to remove the jitter of buttons, and you can use a

capacitance to remove the jitter of buttons. We introduce the software method.

First, we detect whether the level of button interface is low level or high

level.When the level we detected is low level, 5~10 MS delay is needed, and

then detect whether the level of button interface is low or high. If the signal is

low, we can confirm that the button is pressed once. You can also use a 0.1 uF

capacitance to clean up the jitter of buttons. The schematic diagram is shown

in below:

2. interrupt

Hardware interrupts were introduced as a way to reduce wasting the

processor's valuable time in polling loops, waiting for external events. They

 - 12 -

may be implemented in hardware as a distinct system with control lines, or

they may be integrated into the memory subsystem.

3. Key functions:

●attachInterrupt(interrupt, ISR, mode)

Specifies a named Interrupt Service Routine (ISR) to call when an interrupt

occurs. Replaces any previous function that was attached to the interrupt.

Most Arduino boards have two external interrupts: numbers 0 (on digital pin 2)

and 1 (on digital pin 3).

Generally, an ISR should be as short and fast as possible. If your sketch uses

multiple ISRs, only one can run at a time, other interrupts will be ignored

(turned off) until the current one is finished. as delay() and millis() both rely on

interrupts, they will not work while an ISR is running. delayMicroseconds(),

which does not rely on interrupts, will work as expected.

Syntax

attachInterrupt(pin, ISR, mode)

Parameters

pin: the pin number

ISR: the ISR will be called when the interrupt occurs; this function must take

no parameters and return nothing. This function is sometimes referred to as

an interrupt service routine.

mode: defines when the interrupt should be triggered. Four contstants are

predefined as valid values:

-LOW to trigger the interrupt whenever the pin is low,

-CHANGE to trigger the interrupt whenever the pin changes value

-RISING to trigger when the pin goes from low to high,

-FALLING for when the pin goes from high to low.

●digitalRead()

Reads the value from a specified digital pin, either HIGH or LOW.

Syntax

digitalRead(pin)

Parameters

pin: the number of the digital pin you want to read (int)

Returns

HIGH or LOW

●delayMicroseconds(us)

 - 13 -

Pauses the program for the amount of time (in microseconds) specified as

parameter. There are a thousand microseconds in a millisecond, and a million

microseconds in a second.

Currently, the largest value that will produce an accurate delay is 16383. This

could change in future Arduino releases. For delays longer than a few thousand

microseconds, you should use delay() instead.

Syntax

delayMicroseconds(us)

Parameters

us: the number of microseconds to pause (unsigned int)

Returns

None

Procedures

1. Build the circuit

2. Program

3. Compile the program and upload to Arduino UNO board

When you press the button, you can see the state of the LED will be toggled.

(ON->OFF，OFF->ON).

 - 14 -

Summary

Through this lesson, you should have learned how to use the Arduino UNO

detects an external button state, and then toggle the state of LED relying on

the state of the button detected before.

 - 15 -

Lesson 4 Tilt Switch

Overview

In this lesson, we will learn how to use the tilt switch and change the state of

an LED by changing the angle of tilt switch.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* Tilt switch

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

The tilt switch is also called the ball switch. When the switch is tilted in the

appropriate direction, the contacts will be connected, tilting the switch the

opposite direction causes the metallic ball to move away from that set of

contacts, thus breaking that circuit.

Procedures

1. Build the circuit

 - 16 -

2. Program

/***

File name: 04_tiltSwitch.ino

Description: Tilt switches to control the LED light on or off

Website: www.adeept.com

E-mail: support@adeept.com

Author: Tom

Date: 2015/05/02

***/

int ledpin=11; //definition digital 11 pins as pin to control the

//LED

int tiltSwitchpin=7; //Set the digital 7 to tilt switch interface

int val; //Define variable val

void setup()

{

 pinMode(ledpin,OUTPUT); //Define small lights interface for the

//output interface

 pinMode(tiltSwitchpin,INPUT_PULLUP);//define the tilt switch

//interface for input interface

}

void loop()

{

 val=digitalRead(tiltSwitchpin);//Read the number seven level value is

//assigned to val

 if(val==LOW) //Detect tilt switch is disconnected, the

//tilt switch when small lights go out

 { digitalWrite(ledpin,LOW);} //Output low, LED OFF

 else //Detection of tilt switch is conduction,

//tilt the little lights up when the switch conduction

 { digitalWrite(ledpin,HIGH);} //Output high, LE ON

}

3. Compile the program and upload to Arduino UNO board

Now, when you lean the breadboard at an certain angle, you will see the state

of LED is changed.

 - 17 -

Summary

In this lesson, we have learned the principle and application of the tilt switch.

Tilt switch is a very simple electronic component, but simple device can often

make something interesting.

 - 18 -

Lesson 5 LED Flowing Lights

Overview

In the first class, we have learned how to make an LED blink by programming

the Arduino. Today, we will use the Arduino to control 8 LEDs, so that 8 LEDs

showing the result of flowing.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 8* LED

- 8* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

The principle of this experiment is very simple. It is very similar with the first

class.

Key function:

●for statements

The for statement is used to repeat a block of statements enclosed in curly

braces. An increment counter is usually used to increment and terminate the

loop. The for statement is useful for any repetitive operation, and is often used

in combination with arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);

}

 - 19 -

The initialization happens first and exactly once. Each time through the loop,

the condition is tested; if it's true, the statement block, and the increment is

executed, then the condition is tested again. When the condition becomes

false, the loop ends.

Procedures

1. Build the circuit

2. Program

3. Compile the program and upload to Arduino UNO board

Now, you should see 8 LEDs are lit in sequence from the right green one to the

 - 20 -

left, next from the left to the right one. And then repeat the above

phenomenon.

Summary

Through this simple and fun experiment, we have learned more skilled

programming about the Arduino. In addition, you can also modify the circuit

and code we provided to achieve even more dazzling effect.

 - 21 -

Lesson 6 Breathing LED

Overview

In this lesson, we will learn how to program the Arduino to generate PWM

signal. And use the PWM square-wave signal control an LED gradually

becomes brighter and then gradually becomes dark like the animal’s

breathing.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results with

digital means. Digital control is used to create a square wave, a signal switched

between on and off. This on-off pattern can simulate voltages in between full

on (5 Volts) and off (0 Volts) by changing the portion of the time the signal

spends on versus the time that the signal spends off. The duration of "on time"

is called the pulse width. To get varying analog values, you change, or

modulate, that pulse width. If you repeat this on-off pattern fast enough with

an LED for example, the result is as if the signal is a steady voltage between 0

and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This

duration or period is the inverse of the PWM frequency. In other words, with

Arduino's PWM frequency at about 500Hz, the green lines would measure 2

milliseconds each. A call to analogWrite() is on a scale of 0 - 255, such that

analogWrite(255) requests a 100% duty cycle (always on), and

analogWrite(127) is a 50% duty cycle (on half the time) for example.

 - 22 -

Key function:

●analogWrite()

Writes an analog value (PWM wave) to a pin. Can be used to light an LED at

varying brightnesses or drive a motor at various speeds. After a call to

analogWrite(), the pin will generate a steady square wave of the specified duty

cycle until the next call to analogWrite() (or a call to digitalRead() or

digitalWrite() on the same pin). You do not need to call pinMode() to set the

pin as an output before calling analogWrite().

Syntax

analogWrite(pin, value)

Parameters

pin: the pin to write to.

value: the duty cycle: between 0 (always off) and 255 (always on).

Returns

nothing

Procedures

1. Build the circuit

 - 23 -

2. Program

3. Compile the program and upload to Arduino UNO board.

Now, you should see the LED gradually from dark to brighter, and then from

brighter to dark, continuing to repeat the process, its rhythm like the animal's

breathing.

 - 24 -

Summary

By learning this lesson, I believe that you have understood the basic principles

of the PWM, and mastered the PWM programming on the Arduino platform.

 - 25 -

Lesson 7 Controlling a RGB LED by PWM

Overview

In this lesson, we will program the Arduino for RGB LED control, and make

RGB LED emits a various of colors of light.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* RGB LED

- 3* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

RGB LEDs consist of three LEDs. Each LED actually has one red, one green and

one blue light. These three colored LEDs are capable of producing any color.

Tri-color LEDs with red, green, and blue emitters, in general using a four-wire

connection with one common lead (anode or cathode). These LEDs can have

either common anode or common cathode leads.

What we used in this experiment is the common anode RGB LED. The longest

pin is the common anode of three LEDs. The pin is connected to the +5V pin of

the Arduino, and the three remaining pins are connected to the Arduino’s D9,

D10, D11 pins through a current limiting resistor.

In this way, we can control the color of RGB LED by 3-channel PWM signal.

Procedures

 - 26 -

1. Build the circuit

2. Program

3. Compile the program and upload to Arduino UNO board

Now, you can see the RGB LED emitting red, green, blue, yellow, white and

purple light, then the RGB LED will be off, each state continues 1s, after

repeating the above procedure.

 - 27 -

Summary

By learning this lesson, I believe you have already known the principle and the

programming of RGB LED. I hope you can use your imagination to achieve

even more cool ideas based on this lesson.

 - 28 -

Lesson 8 7-segment display

Overview

In this lesson, we will program the Arduino to achieve the controlling of

segment display.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* 220Ω Resistor

- 1* 7-Segment display

- 1* Breadboard

- Several Jumper wires

Principle

The seven-segment display is a form of electronic display device for displaying

decimal numerals that is an alternative to the more complex dot

matrix displays.

Seven-segment displays are widely used in digital clocks, electronic meters,

basic calculators, and other electronic devices that display numerical

information.

The seven-segment display is an 8-shaped LED display device composed of

eight LEDs (including a decimal point), these segments respectively named a,

b, c, d, e, f, g, dp.

The segment display can be divided into common anode and common cathode

segment display by internal connections.

 - 29 -

When using a common anode LED, the common anode should to be connected

to the power supply (VCC); when using a common cathode LED, the common

cathode should be connected to the ground (GND).

Each segment of a segment display is composed of LED, so a resistor is needed

for protecting the LED.

A 7-segment display has seven segments for displaying a figure and a segment

for displaying a decimal point. If you want to display a number ‘1’, you should

only light the segment b and c.

Procedures

1. Build the circuit

 - 30 -

2. Program

3. Compile the program and upload to Arduino UNO board

Now, you should see the number 0~9 are displayed on the segment display.

 - 31 -

Summary

Through this lesson, we have learned the principle and programming of

segment display. I hope you can combine the former course to modify the code

we provided in this lesson to achieve cooler originality.

 - 32 -

Lesson 9 Dot-matrix display

Overview

In this lesson, we will program to control a 8*8 dot-matrix to realize the

display of graphical and digital we want.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* 8*8 Dot-matrix

- 2* 74HC595

- 1* Breadboard

- Several Jumper wires

Principle

1. Dot-matrix display

A dot-matrix display is a display device used to display information on

machines, clocks, railway departure indicators and many other devices

requiring a simple display device of limited resolution.

The display consists of a dot-matrix of lights or mechanical indicators arranged

in a rectangular configuration (other shapes are also possible, although not

common) such that by switching on or off selected lights, text or graphics can

be displayed. A dot-matrix controller converts instructions from a processor

into signals which turns on or off lights in the matrix so that the required

display is produced.

The internal structure and appearance of the dot-matrix display is as shown in

below:

 - 33 -

A 8*8 dot-matrix display consists of 64 LEDs, and each LED is placed at the

intersection of the lines and columns. When the corresponding row is set as

high level and the column is set as low level, then the LED will be lit.

A certain drive current is required for the dot-matrix display. In addition, more

pins are needed for connecting dot-matrix display with controller. Thus, to

save the Arduino’s GPIO, driver IC 74HC595 is used in the experiment.

2. 74HC595

The 74HC595 is an 8-stage serial shift register with a storage register and

3-state outputs. The shift register and storage register have separate clocks.

Data is shifted on the positive-going transitions of the SH_CP input. The data in

each register is transferred to the storage register on a positive-going

transition of the ST_CP input. The shift register has a serial input (DS) and a

serial standard output ('7Q) for cascading. It is also provided with

asynchronous reset (active LOW) for all 8 shift register stages. The storage

register has 8 parallel 3-state bus driver outputs. Data in the storage register

appears at the output whenever the output enable input (OE) is LOW.

In this experiment, only 3 pins of Arduino are used for controlling a dot-matrix

display due to the existence of 74HC595.

 - 34 -

The flowing is the function of each pin:

DS: Serial data input

Q0-Q7: 8-bit parallel data output

Q7’: Series data output pin, always connected to DS pin of the next 74HC595

OE: Output enable pin, effective at low level, connected to the ground directly

MR: Reset pin, effective at low level, directly connected to 5V high level in

practical applications

SH_CP: Shift register clock input

ST_CP: storage register clock input

3. Key function:

●shiftOut()

Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the

leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data

pin, after which a clock pin is pulsed (taken high, then low) to indicate that the

bit is available.

Syntax

shiftOut(dataPin, clockPin, bitOrder, value)

Parameters

dataPin: the pin on which to output each bit (int).

clockPin: the pin to toggle once the dataPin has been set to the correct value.

bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.

(Most Significant Bit First, or, Least Significant Bit First)

value: the data to shift out. (byte)

Returns

None

 - 35 -

Procedures

1. Build the circuit (Make sure that the circuit connection is correct and then

power, otherwise it may cause the chips to burn.)

2. Program

3. Compile the program and upload to Arduino UNO board

Now, you can see a rolling “Adeept” should be displayed on the dot-matrix

display.

 - 36 -

Summary

In this experiment, we have not only learned how to operate a dot-matrix

display to display numbers and letters, but also learned the basic usage of

74HC595, then you can try operating the dot-matrix display to show other

images.

 - 37 -

Lesson 10 LCD1602

Overview

In this lesson, we will learn how to use a character display device—LCD1602

on the Arduino platform. First, we make the LCD1602 display a string "Hello

Geeks!" scrolling，then display“Adeept”and“www.adeept.com”static.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* LCD1602

- 1* 10KΩ Potentiometer

- 1* Breadboard

- Several Jumper wires

Principle

LCD1602 is a kind of character LCD display. The LCD has a parallel interface,

meaning that the microcontroller has to manipulate several interface pins at

once to control the display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're

writing data to. You can select either the data register, which holds what goes

on the screen, or an instruction register, which is where the LCD's controller

looks for instructions on what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The state of these pins (high or low) are the bits that

you're writing to a register when you write, or the values when you read.

● There's also a display contrast pin (Vo), power supply pins (+5V and Gnd)

and LED Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD,

control the display contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the

image of what you want to display into the data registers, then putting

instructions in the instruction register. The LiquidCrystal Library simplifies this

for you so you don't need to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit.

http://www.adeept.com/
query:potentiometer

 - 38 -

The 4-bit mode requires seven I/O pins from the Arduino, while the 8-bit mode

requires 11 pins. For displaying text on the screen, you can do most everything

in 4-bit mode, so example shows how to control a 2x16 LCD in 4-bit mode.

A potentiometer , informally a pot, is a three-terminal resistor with a sliding or

rotating contact that forms an adjustable voltage divider. If only two terminals

are used, one end and the wiper, it acts as a variable resistor or rheostat.

Key function:

●begin()

Specifies the dimensions (width and height) of the display.

Syntax

lcd.begin(cols, rows)

Parameters

lcd: a variable of type LiquidCrystal

cols: the number of columns that the display has

rows: the number of rows that the display has

●setCursor()

Position the LCD cursor; that is, set the location at which subsequent text

written to the LCD will be displayed.

Syntax

lcd.setCursor(col, row)

Parameters

lcd: a variable of type LiquidCrystal

col: the column at which to position the cursor (with 0 being the first column)

row: the row at which to position the cursor (with 0 being the first row)

●scrollDisplayLeft()

Scrolls the contents of the display (text and cursor) one space to the left.

Syntax

lcd.scrollDisplayLeft()

Parameters

lcd: a variable of type LiquidCrystal

Example

scrollDisplayLeft() and scrollDisplayRight()

See also

scrollDisplayRight()

●print()

Prints text to the LCD.

 - 39 -

Syntax

lcd.print(data)

lcd.print(data, BASE)

Parameters

lcd: a variable of type LiquidCrystal

data: the data to print (char, byte, int, long, or string)

BASE (optional): the base in which to print numbers: BIN for binary (base 2),

DEC for decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base

16).

Returns

byte

print() will return the number of bytes written, though reading that number is

optional

●clear()

Clears the LCD screen and positions the cursor in the upper-left corner.

Syntax

lcd.clear()

Parameters

lcd: a variable of type LiquidCrystal

Procedures

1. Build the circuit

2. Program

 - 40 -

3. Compile the program and upload to Arduino UNO board

Now, you can see the string "Hello Geeks!" is shown on the LCD1602 scrolling,

and then the string "Adeept" and "www.adeept.com" is displayed on the

LCD1602 static.

Summary

I believe that you have already mastered the driver of LCD1602 through this

lesson. I hope you can make something more interesting base on this lesson

and the previous lesson learned.

http://www.adeept.com/

 - 41 -

Lesson 11 Photoresistor

Overview

In this lesson, we will learn how to measure the light intensity by photoresistor

and make the measurement result displayed on the LCD1602.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* LCD1602

- 1* Photoresistor

- 1* 10KΩ Resistor

- 1* 10KΩ Potentiometer

- 1* Breadboard

- Several Jumper wires

Principle

A photoresistor is a light-controlled variable resistor. The resistance of a

photoresistor decreases with the increasing incident light intensity; in other

words, it exhibits photoconductivity. A photoresistor can be applied in

light-sensitive detector circuits.

A photoresistor is made of a high resistance semiconductor. In the dark, a

photoresistor can have a resistance as high as a few megohms (MΩ), while in

the light, a photoresistor can have a resistance as low as a few hundred ohms.

If incident light on a photoresistor exceeds a certain frequency, photons

absorbed by the semiconductor give bound electrons enough energy to jump

into the conduction band. The resulting free electrons (and their hole partners)

conduct electricity, thereby lowering resistance. The resistance range and

sensitivity of a photoresistor can substantially differ among dissimilar devices.

Moreover, unique photoresistors may react substantially differently to photons

within certain wavelength bands.

The schematic diagram of this experiment is shown below:

query:potentiometer

 - 42 -

With the increase of the light intensity, the resistance of photoresistor will be

decreased. The voltage of GPIO port in the above figure will become high.

Procedures

1. Build the circuit

2. Program

3. Compile the program and upload to Arduino UNO board

Now, when you try to block the light towards the photoresistor, you will find

that the value displayed on the LCD1602 will be reduced. Otherwise, when you

use a powerful light to irradiate the photoresistor, the value displayed on the

LCD1602 will be increased.

 - 43 -

Summary

By learning this lesson, we have learned how to detect surrounding light

intensity with the photoresistor. You can play your own wisdom, and make

more originality based on this experiment and the former experiment.

 - 44 -

Lesson 12 Serial Port

Overview

In this lesson, we will program the Arduino UNO to achieve function of send

and receive data through the serial port. The Arduino receiving data which

send from PC, and then controlling an LED according to the received data, then

return the state of LED to the PC's serial port monitor.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several Jumper wires

Principle

1. Serial ports

Used for communication between the Arduino board and a computer or other

devices. All Arduino boards have at least one serial port (also known as a UART

or USART). It communicates on digital pins 0 (RX) and 1 (TX) as well as with

the computer via USB. Thus, if you use these functions, you cannot also use

pins 0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate

with an Arduino board. Click the serial monitor button in the toolbar and select

the same baud rate used in the call to begin().

To use these pins to communicate with your personal computer, you will need

an additional USB-to-serial adaptor, as they are not connected to the UNO's

USB-to-serial adaptor. To use them to communicate with an external TTL serial

device, connect the TX pin to your device's RX pin, the RX to your device's TX

pin, and the ground of your UNO to your device's ground. (Don't connect these

pins directly to an RS232 serial port; they operate at +/- 12V and can damage

your Arduino board.)

2. Key function

●begin()

Sets the data rate in bits per second (baud) for serial data transmission. For

 - 45 -

communicating with the computer, use one of these rates: 300, 1200, 2400,

4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200. You can,

however, specify other rates - for example, to communicate over pins 0 and 1

with a component that requires a particular baud rate.

Syntax

Serial.begin(speed)

Parameters

speed: in bits per second (baud) - long

Returns

nothing

●print()

Prints data to the serial port as human-readable ASCII text. This command can

take many forms. Numbers are printed using an ASCII character for each digit.

Floats are similarly printed as ASCII digits, defaulting to two decimal places.

Bytes are sent as a single character. Characters and strings are sent as is. For

example:

Serial.print(78) gives “78”

Serial.print(1.23456) gives “1.23”

Serial.print('N') gives “N”

Serial.print(“Hello world.”) gives “Hello world.”

An optional second parameter specifies the base (format) to use; permitted

values are BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or

base 10), HEX (hexadecimal, or base 16). For floating point numbers, this

parameter specifies the number of decimal places to use. For example:

Serial.print(78, BIN) gives “1001110”

Serial.print(78, OCT) gives “116”

Serial.print(78, DEC) gives “78”

Serial.print(78, HEX) gives “4E”

Serial.println(1.23456, 0) gives “1”

Serial.println(1.23456, 2) gives “1.23”

Serial.println(1.23456, 4) gives “1.2346”

You can pass flash-memory based strings to Serial.print() by wrapping them

with F(). For example :

Serial.print(F(“Hello World”))

To send a single byte, use Serial.write().

Syntax

Serial.print(val)

 - 46 -

Serial.print(val, format)

Parameters

val: the value to print - any data type format: specifies the number base (for

integral data types) or number of decimal places (for floating point types)

Returns

byte print() will return the number of bytes written, though reading that

number is optional

●println()

Prints data to the serial port as human-readable ASCII text followed by a

carriage return character (ASCII 13, or '∖r') and a newline character (ASCII 10,

or '∖n'). This command takes the same forms as Serial.print().

Syntax

Serial.println(val)

Serial.println(val, format)

Parameters

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of

decimal places (for floating point types)

Returns

byte

println() will return the number of bytes written, though reading that number

is optional

●read()

Reads incoming serial data. read() inherits from the Stream utility class.

Syntax

Serial.read()

Parameters

None

Returns

the first byte of incoming serial data available (or -1 if no data is available) - int

Procedures

1. Build the circuit

 - 47 -

2. Program

3. Compile the program and upload to Arduino UNO board

Open the port monitor, and then select the appropriate baud rate according to

the program.

Now, if you send a character‘1’or‘0’on the serial monitor, the state of LED will

be lit or gone out.

 - 48 -

Summary

Through this lesson, you should have understood that the computer can send

data to Arduino UNO via the serial port, and then control the state of LED. I

hope you can use your head to make more interesting things based on this

lesson.

 - 49 -

Lesson 13 Frequency meter

Overview

In this lesson, we will make a simple frequency meter with the Arduino UNO.

We will acquire the frequency of square wave which is generated by 555 timer,

and then send the result to serial monitor through USB port.

Requirement

- 1* Arduino UNO

- 1* USB cable

- 1* NE555

- 1* 10KΩ Resistor

- 1* 10KΩ Potentiometer

- 2* 104 Capacitor

- 1* Breadboard

- Several Jumper wires

Principle

1. NE555

The 555 integrated circuit is originally used as a timer, and that is why it is

called 555 timer or 555 time-base circuit. It is widely used in various electronic

products because of its reliability, convenience and low price. There are dozens

of components in the 555 integrated circuit, such as divider, comparator, basic

R-S trigger, discharge tube, buffer and so on. It is a complex circuit and a

hybrid composed of analog and digital circuit.

As shown in the above picture, the 555 integrated circuit is dual in-line with 8

pins package(DIP). Thereinto:

 - 50 -

Pin 6 is the THRESHOLD for the input of upper comparator;

Pin 2 is TRIGGER for the input of lower comparator;

Pin 3 is the OUTPUT having two states of 0 and 1 decided by the input electrical

level;

Pin 7, the DISCHARGE which has two states of suspension and ground

connection also decided by input, is the output of the internal discharge tube;

Pin 4 is the RESET that outputs low level when supplied low voltage level;

Pin 5 is the CONTROL VOLTAGE that can change the upper and lower level

trigger value;

Pin 8 (Vcc) is the power supply;

Pin 1(GND) is the ground.

The circuit schematic diagram used in the experiment is shown in below:

The circuit can generate a square wave signal that the frequency is adjustable.

The frequency can be calculated by the formula:

 C2RR

1.44
Frequency

BA 


2. Key functions：

●pulseIn()

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH,

pulseIn() waits for the pin to go HIGH, starts timing, then waits for the pin to

go LOW and stops timing. Returns the length of the pulse in microseconds.

Gives up and returns 0 if no pulse starts within a specified time out.

The timing of this function has been determined empirically and will probably

show errors in longer pulses. Works on pulses from 10 microseconds to 3

minutes in length.

Syntax

pulseIn(pin, value)

 - 51 -

pulseIn(pin, value, timeout)

Parameters

pin: the number of the pin on which you want to read the pulse. (int)

value: type of pulse to read: either HIGH or LOW. (int)

timeout (optional): the number of microseconds to wait for the pulse to start;

default is one second (unsigned long)

Returns

the length of the pulse (in microseconds) or 0 if no pulse started before the

timeout (unsigned long)

Procedures

1. Build the circuit (Make sure that the circuit connection is correct and then

power, otherwise it may cause the chips to burn.)

2.

2. Program

3. Compile the program and upload to Arduino UNO board

Now, when you rotating the potentiometer knob, the value of square wave’s

frequency printed on the serial monitor will be changed.

 - 52 -

 - 53 -

Summary

By learning this lesson, I believe that you have mastered the principle of timer

and you can make a simple frequency meter by yourself. You can display the

value of square frequency to a LCD1602 by modifying the code we provided.

 - 54 -

Lesson 14 A Simple Voltmeter

Overview

In this lesson, we will make a simple voltmeter with Arduino UNO and

LCD1602, the range of this voltmeter is 0~5V. Then, we will measure the

voltage of the potentiometer’s adjustment end with the simple voltmeter and

display it on the LCD1602.

Requirement

- 1* Arduino UNO

- 1* USB Cable

- 1* LCD1602

- 2* Potentiometer

- 1* Breadboard

- Several Jumper wires

Principle

The basic principle of this experiment: Converting the analog voltage that the

Arduino collected to digital quantity by the ADC(analog-to-digital converter)

through programming, then display the voltage on the LCD1602.

Connect the three wires from the potentiometer to your Arduino board. The

first goes to ground from one of the outer pins of the potentiometer. The

second goes from analog input 0 to the middle pin of the potentiometer. The

third goes from 5 volts to the other outer pin of the potentiometer.

By turning the shaft of the potentiometer, you change the amount of

resistance on either side of the wiper which is connected to the center pin of

the potentiometer. This changes the voltage at the center pin. When the

resistance between the center and the side connected to 5 volts is close to zero

(and the resistance on the other side is close to 10 kilohms), the voltage at the

center pin nears 5 volts. When the resistances are reversed, the voltage at the

center pin nears 0 volts, or ground. This voltage is the analog voltage that

you're reading as an input.

The Arduino has a circuit inside called an analog-to-digital converter that reads

this changing voltage and converts it to a number between 0 and 1023. When

the shaft is turned all the way in one direction, there are 0 volts going to the

pin, and the input value is 0. When the shaft is turned all the way in the

 - 55 -

opposite direction, there are 5 volts going to the pin and the input value is

1023. In between, analogRead() returns a number between 0 and 1023 that

is proportional to the amount of voltage being applied to the pin.

Key functions:

● analogRead()

Reads the value from the specified analog pin. The Arduino board contains a 6

channel (8 channels on the Mini and Nano, 16 on the Mega), 10-bit analog to

digital converter. This means that it will map input voltages between 0 and 5

volts into integer values between 0 and 1023. This yields a resolution between

readings of: 5 volts / 1024 units or, 0.0049 volts (4.9 mV) per unit. The input

range and resolution can be changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the

maximum reading rate is about 10,000 times a second.

Syntax

analogRead(pin)

Parameters

pin: the number of the analog input pin to read from (0 to 5 on most boards,

0 to 7 on the Mini and Nano, 0 to 15 on the Mega)

Returns

int (0 to 1023)

Procedures

1. Build the circuit

 - 56 -

2. Program

3. Compile the program and upload to Arduino UNO.

Now, when you turning the shaft of the potentiometer, you will see the voltage

displayed on the LCD1602 will be changed.

Summary

The substance of voltmeter is reading analog voltage which input to ADC inside.

Through this course, I believe that you have mastered how to read analog

value and how to make a simple voltmeter with Arduino.

 - 57 -

Lesson 15 DC motor

Overview

In this comprehensive experiment, we will learn how to control the state of DC

motor with Arduino, and the state will be displayed through the LED at the

same time. The state of DC motor includes its forward, reverse, acceleration,

deceleration and stop.

Requirement

 - 1* Arduino UNO

 - 1* USB Cable

 - 1* L9110 DC Motor driver

 - 1* DC motor

 - 1* Battery holder

 - 1* Breadboard

 - Several Jumper wires

Principle

1. L9110

L9110 is a driver chip which is used to control and drive motor. The chip has

two TTL/CMOS compatible input terminals, and possesses the property of

anti-interference: it has high current driving capability, two output terminals

that can directly drive DC motor, each output port can provide 750~800mA

dynamic current, and its peak current can reach 1.5~2.0A; L9110 is widely

applied to various motor drives, such as toy cars, stepper motor, power

switches and other electric circuits.

javascript:void(0);
javascript:void(0);

 - 58 -

OA, OB: These are used to connect the DC motor.

VCC: Power supply (+5V)

GND: The cathode of the power supply (Ground).

IA, IB: The input terminal of drive signal.

2. DC motor

A DC motor is any of a class of electrical machines that converts direct current

electrical power into mechanical power. The most common types rely on the

forces produced by magnetic fields. Nearly all types of DC motors have some

internal mechanism, either electromechanical or electronic, to periodically

change the direction of current flow in part of the motor. Most types produce

rotary motion; a linear motor directly produces force and motion in a straight

line.

DC motors were the first type widely used, since they could be powered from

existing direct-current lighting power distribution systems. A DC motor's

speed can be controlled over a wide range, using either a variable supply

voltage or by changing the strength of current in its field windings. Small DC

motors are used in tools, toys, and appliances. The universal motor can

operate on direct current but is a lightweight motor used for portable power

tools and appliances.

 - 59 -

3. Key functions

●switch / case statements

Like if statements, switch…case controls the flow of programs by allowing

programmers to specify different code that should be executed in various

conditions. In particular, a switch statement compares the value of a variable

to the values specified in case statements. When a case statement is found

whose value matches that of the variable, the code in that case statement is

run.

The break keyword exits the switch statement, and is typically used at the end

of each case. Without a break statement, the switch statement will continue

executing the following expressions (“falling-through”) until a break, or the

end of the switch statement is reached.

Example

switch (var) {

 case 1:

 //do something when var equals 1

 break;

 case 2:

 //do something when var equals 2

 break;

 default:

 // if nothing else matches, do the default

 // default is optional

 }

Syntax

switch (var) {

 case label:

 - 60 -

 // statements

 break;

 case label:

 // statements

 break;

 default:

 // statements

}

Parameters

var: the variable whose value to compare to the various cases label: a value to

compare the variable to

Procedures

1. Build the circuit (Make sure that the circuit connection is correct and then

power, otherwise it may cause the chips to burn.)

2. Program

3. Compile the program and upload to Arduino UNO board

Press the btn1 button to stop or run the DC motor; press the btn2 button to

forward or reverse the DC motor; Press the btn3 button to accelerate the DC

motor; Press the btn4 button to decelerate the DC motor. When one of the four

 - 61 -

buttons is pressed, their corresponding LED will be flashing which prompts

that the current button is clicked.

Summary

I think you must have grasped the basic theory and programming of the DC

motor after studying this experiment. You not only can forward and reverse it,

but also can regulate its speed. Besides, you can do some interesting

applications with the combination of this course and your prior knowledge.

