

Components List

NO. Name Picture Qty

1 RC522 RFID Module

1

2 ID Card

1

3 Special-shaped ID Card

1

4 LCD1602

1

5 PS2 Joystick Module

1

6 Ultrasonic Distance Sensor Module

1

7

ADXL345

(Triaxial Accelerometer Sensor Module)

1

8

DHT-11

(Digital Temperature & Humidity Sensor)

1

9 ADC0832

1

10 Stepper Motor

1

11 ULN2003-based Stepper Motor Driver

1

12 L9110 Motor Driver

1

13 DC Motor

1

14 4*4 Matrix Keyboard

1

15 Breadboard Power Supply Module

1

16 40 pin GPIO Extension Board

1

17 40 pin GPIO Cable

1

18 Light Sensor (Photoresistor)

2

19 Analog Temperature Sensor(Thermistor)

1

20 Relay

1

21 Active Buzzer

1

22 Passive Buzzer

1

23 7-segment Display

1

24 4-digit 7-segment Display

1

25 LED Bar Graph Display

1

26 Dot-matrix Display

1

27 74HC595

2

28 Tilt Switch

1

29 Switch

2

30 RGB LED

1

31 Red LED

8

32 Green LED

4

33 Yellow LED

4

34 Blue LED

4

35 Button (large)

4

36 Button (small)

5

37 Button cap (red)

1

38 Button cap (white)

1

39 Button cap (blue)

2

40 Resistor(220Ω)

16

41 Resistor(1kΩ)

10

42 Resistor(10kΩ)

5

43 Potentiometer (10KΩ)

2

44 Capacitor (104)

5

45 Capacitor (10uF)

2

46 1N4148 Diode

2

47 1N4001 Diode

2

48 NPN Transistor (8050)

4

49 PNP Transistor (8550)

4

50 Breadboard

1

51 Male to Male Jumper Wires

40

52 Male to Female Jumper Wires

20

53 Female to Female Jumper Wires

20

54 Header (40pin) 1

55 Band Resistor Card

1

Preface

About This Kit

This is an RFID learning kit for Raspberry Pi, which includes an RC522 RFID

module, some common electronic components and sensors. Through the

study, you will get a better understanding of RFID and Raspberry Pi, and be

able to make fascinating works based on Raspberry Pi.

About Adeept

Adeept is a technical service team of open source software and hardware.

Dedicated to applying the Internet and the latest industrial technology in open

source area, we strive to provide best hardware support and software service

for general makers and electronic enthusiasts around the world. We aim to

create infinite possibilities with sharing. No matter what field you are in, we

can lead you into the electronic world and bring your ideas into reality.

If you have any problems for learning, please contact us at support@adeept.com,

or please ask questions in our forum www.adeept.com. We will do our best to

help you solve the problem.

mailto:support@adeept.com
http://www.adeept.com/

Content

About the Raspberry Pi .. - 1 -

Raspberry Pi Pin Numbering Introduction ... - 2 -

Raspberry Pi GPIO Library Introduction ... - 4 -

Lesson 1 Blinking LED.. - 10 -

Lesson 2 Active Buzzer .. - 16 -

Lesson 3 Passive Buzzer .. - 19 -

Lesson 4 Tilt Switch ... - 22 -

Lesson 5 Controlling an LED by Button .. - 24 -

Lesson 6 Relay ... - 28 -

Lesson 7 LED Flowing Lights ... - 31 -

Lesson 8 Breathing LED .. - 34 -

Lesson 9 Controlling an RGB LED with PWM ... - 37 -

Lesson 10 7-Segment Display .. - 40 -

Lesson 11 4-Digit 7-Segment Display ... - 43 -

Lesson 12 LCD1602 .. - 46 -

Lesson 13 Matrix Keyboard ... - 50 -

Lesson 14 Measuring the Distance .. - 53 -

Lesson 15 Temperature & Humidity Sensor – DHT-11 ... - 55 -

Lesson 16 Dot-matrix Display ... - 58 -

Lesson 17 Photoresistor ... - 62 -

Lesson 18 Thermistor ... - 65 -

Lesson 19 RFID ... - 68 -

Lesson 20 LED Bar Graph ... - 77 -

Lesson 21 Controlling an LED Through LAN ... - 75 -

Lesson 22 DC Motor .. - 79 -

Lesson 23 Controlling a Stepper Motor ... - 83 -

Lesson 24 Acceleration Sensor ADXL345 .. - 86 -

Lesson 25 PS2 Joystick .. - 92 -

Lesson 26 A Simple Access Control System .. - 95 -

- 1 -

About the Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a

computer monitor or TV, and uses a standard keyboard and mouse. It is a

capable little device that enables people of all ages to explore computing, and

to learn how to program in languages like Scratch and Python. It’s capable of

doing everything you’d expect a desktop computer to do, from browsing the

internet and playing high-definition video, to making spreadsheets,

word-processing, and playing games.

What’s more, the Raspberry Pi has the ability to interact with the outside world,

and has been used in a wide array of digital maker projects, from music

machines and parent detectors to weather stations and tweeting birdhouses

with infra-red cameras. We want to see the Raspberry Pi being used by kids all

over the world to learn to program and understand how computers work.

Learn more at:

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

- 2 -

Raspberry Pi Pin Numbering Introduction

There are three methods for numbering Raspberry Pi’s GPIO:

1. Numbering according to the physical location of the pins, from left to right,

top to bottom – the left is odd and the right is even.

2. Numbering according the GPIO registers of BCM2835/2836/7 SOC.

3. Numbering according the GPIO library wiringPi.

- 3 -

- 4 -

Raspberry Pi GPIO Library Introduction

Currently, there are two major GPIO libraries for Raspberry Pi: RPi.GPIO and

wiringPi.

RPi.GPIO:

RPi.GPIO is a python module to control Raspberry Pi GPIO channels. For more

information, please visit:

https://pypi.python.org/pypi/RPi.GPIO/

For examples and documentation:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

The RPi.GPIO module is pre-installed in the official Raspbian operating system,

thus you can use it directly.

wiringPi:

The wiringPi is a GPIO access library written in C for the BCM2835/6/7 SOC

used in the Raspberry Pi. It’s released under the GNU LGPLv3 license and is

usable from C and C++ and many other languages with suitable wrappers. It’s

designed to be familiar to people who have used the Arduino “wiring” system.

For more information about wiringPi, please visit: http://wiringpi.com/

Install wiringPi:

Step 1: Get the source code

$ sudo git clone git://git.drogon.net/wiringPi

Step 2: Compile and install

$ cd wiringPi

$ git pull origin

$ sudo ./build

Press Enter and the script build will automatically compile wiringPi source code

and then install it to the Raspberry Pi.

Next, verify whether the wiringPi is installed successfully or not:

https://pypi.python.org/pypi/RPi.GPIO/
http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
http://wiringpi.com/

- 5 -

wiringPi includes a command-line utility gpio which can be used to program

and set up the GPIO pins. You can use it to read and write the pins or even

control them from shell scripts.

You can verify whether the wiringPi is installed successfully or not by the

following commands:

$ sudo gpio -v

$ sudo gpio readall

If the information above is shown, it indicates that the wiringPi has been

installed successfully.

- 6 -

How to Use wiringPi and RPi.GPIO

For how to use the wiringPi C library and RPi.GPIO Python module, here we

take blinking an LED for example.

Step 1: Build the circuit according to the following schematic diagram

 Note: Resistance = 220Ω

For Python users:

Step 2: Create a file named led.py

$ sudo touch led.py

Step 3: Open the file led.py with vim or nano

$ sudo vim led.py

Write the following source code, then save and exit.

- 7 -

Step 4: Run

$ sudo python led.py

Now you should see the LED blinking. Press Ctrl+C and the program execution

will be terminated.

For C language users:

Step 2: Create a file named led.c

$ sudo touch led.c

Step 3: Open the file led.c with vim or nano

- 8 -

$ sudo vim led.c

Write the following source code, then save and exit.

Step 4: Compile the code

$ sudo gcc led.c -lwiringPi

After the command is executed, you'll find a file named a.out appear in the

current directory. It is an executable program.

Step 5: Run

$ sudo ./a.out

Now you should see that the LED is blinking. Press Ctrl+C and the program

execution will be terminated.

- 9 -

Resources:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

http://wiringpi.com/reference/

NOTE:

Before you continue learning, please copy the source code provided with the

kit to your Raspberry Pi's /home/ directory, or download the source code

directly from our github repository:

C Language Source Code:

$ git clone https://github.com/adeept/Adeept_RFID_Learning_Kit_C_Code_for_RPi.git

Python Source Code:

$ git clone https://github.com/adeept/Adeept_RFID_Learning_Kit_Python_Code_for_RPi.git

http://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
http://wiringpi.com/reference/

- 10 -

Lesson 1 Blinking LED

Overview

In this tutorial, we will start the journey of learning Raspberry Pi. To begin with simple

experiments, we will first learn how to control an LED.

Components

- 1* Raspberry Pi

- 1* 220Ω Resistor

- 1* LED

- 1* Breadboard

- 2* Jumper wires

Principle

In this lesson, we will program the Raspberry Pi to output high level (+3.3V) and low

level (0V), and then make an LED which is connected to the Raspberry Pi GPIO flicker

with a certain frequency.

1. What is LED?

The LED is the abbreviation of light emitting diode. It is usually made of gallium

arsenide, gallium phosphide semiconductor materials. An LED has two electrodes: a

positive electrode and a negative electrode. It lights up only when a forward current

passes, and it can flash red, blue, green or yellow, etc. The color of the light depends

on the materials it is made.

In general, the drive current for LED is 5-20mA. Therefore, in reality it usually needs an

extra resistor for current limitation so as to protect the LED.

2. What is resistor?

The main function of the resistor is to limit current. In the circuit, the character „R‟

represents resistor, and the unit of resistance is ohm(Ω).

A band resistor is used in this experiment. It is a resistor with a surface coated with

some particular color through which the resistance can be identified directly.

There are two methods for connecting an LED with Raspberry Pi GPIO:

①

As shown in the schematic diagram, the anode of the LED is connected to VCC (+3.3V),

- 11 -

and the cathode to the Raspberry Pi GPIO. When the GPIO outputs low level, the LED

is on; when it outputs high, the LED is off.

②

As shown in the schematic diagram above, the anode of LED is connected to

Raspberry Pi GPIO after a resistor, and the cathode is connected to ground (GND).

When the GPIO outputs high level, the LED is on; when it outputs low level, the LED is

off.

The resistance of a current-limiting resistor is calculated as follows: 5~20mA current is

required to make an LED on, and the output voltage of the Raspberry Pi GPIO is 3.3V,

so we can get the resistance:

R = U / I = 3.3V / (5~20mA) = 165Ω~660Ω

In this experiment, we use a 220ohm resistor.

The experiment is made based on method ① – use pin 11 of Raspberry Pi to control

an LED. When pin 11 of Raspberry Pi is programmed to output low level, the LED will

light up. Next, delay for some time. And then program pin 11 to high level to make the

LED off. Repeat the above process and you can get a blinking LED then.

3. Key functions

For C language users:

● int wiringPiSetup (void)

The function must be called at the start of your program, or your program will fail to

work.

Note : This function needs to be called with root privileges.

● void pinMode (int pin, int mode)

This function sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or

GPIO_CLOCK. Note that only wiringPi pin 1 (BCM_GPIO 18) supports PWM output and

only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK output modes.

The function has no effect when in Sys mode. If you need to change the pin mode,

then you can do it with the gpio program in a script before starting your program.

● void digitalWrite (int pin, int value)

Writes the value HIGH or LOW (1 or 0) to a given pin which must have been set

previously as output. WiringPi treats any non-zero number as HIGH, while 0 is the only

representation of LOW.

- 12 -

● void delay (unsigned int howLong)

This function causes program execution to pause for at least howLong milliseconds.

Due to the multi-tasking nature of Linux it could be longer. Note that the maximum

delay is an unsigned 32-bit integer or approximately 49 days.

For Python users:

● GPIO.setmode(GPIO.BOARD)

There are two ways of numbering the IO pins on a Raspberry Pi within RPi.GPIO. One

is to use the BOARD numbering system. It refers to the pin numbers on the P1 header

of the Raspberry Pi board. The advantage of this numbering system is that your

hardware will always work, regardless of the board revision of the RPi. You will not

need to rewire your connector or change your code.

The other numbering system is by the BCM(GPIO.BCM) numbers. This is a lower level

way of working - it refers to the channel numbers on the Broadcom SOC. You have to

always work with a diagram about which channel number goes to which pin on the

RPi board. Your script could break between revisions of Raspberry Pi boards.

● GPIO.setup(channel, mode)

The function sets every channel you are using as input(GPIO.IN) or output(GPIO.OUT).

● GPIO.output(channel, state)

This function sets the output state of a GPIO pin. The argument channel is the channel

number based on the numbering system you have specified (BOARD or BCM). State

can be 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

● GPIO.cleanup()

At the end any program, it is a good habit to clean up all the resources you might

have used. This is no different from RPi.GPIO. By returning all channels you have used

back to input without pull up/down, you can avoid accidental damage to your RPi

caused by pin short out. Note that this will only clean up GPIO channels that your

script has ever used. And it also clears the pin numbering system in use.

Procedures

Step 1: Build the circuit

- 13 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi /01_blinkingLed/blinkingLed.c)

#include <wiringPi.h>

#include <stdio.h>

#define LedPin 0

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiringPi failed, print message to

screen

 printf("setup wiringPi failed !\n");

 return -1;

 }

 pinMode(LedPin, OUTPUT);

 while(1){

 digitalWrite(LedPin, LOW); //led on

 printf("led on...\n");

 delay(500);

 digitalWrite(LedPin, HIGH); //led off

 printf("...led off\n");

 delay(500);

 }

 return 0;

}

Step 3: Compile

$ gcc blinkingLed.c -o led -lwiringPi

Note : The parameter „-o‟ is to specify a file name for the compiled executable

program. If you do not use this parameter, the default file name is a.out.

- 14 -

Step 4: Run

$ sudo ./led

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/01_blinkingLed_1.py)

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

LedPin = 11 # pin11

def setup():

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output

 GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def loop():

 while True:

 print '...led on'

 GPIO.output(LedPin, GPIO.LOW) # led on

 time.sleep(0.5)

 print 'led off...'

 GPIO.output(LedPin, GPIO.HIGH) # led off

 time.sleep(0.5)

def destroy():

 GPIO.output(LedPin, GPIO.HIGH) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

Step 3: Run

$ sudo python 01_blinkingLed_1.py

Now you can see the LED blinking.

- 15 -

- 16 -

Lesson 2 Active Buzzer

Overview

In this lesson, we will learn how to program the Raspberry Pi to make an active buzzer

beep.

Components

- 1* Raspberry Pi

- 1* Active buzzer

- 1* 1 kΩ Resistor

- 1* NPN Transistor (S8050)

- 1* Breadboard

- Several jumper wires

Principle

A buzzer or beeper is an audio signaling device. As a type of electronic buzzer with an

integrated structure, which uses DC power supply, buzzers are widely used in

computers, printers, photocopiers, alarms, electronic toys, automotive electronic

equipments, telephones, timers and other electronic products for voice devices.

Buzzers can be categorized as active and passive buzzers (See the following pictures).

Place the pins of the buzzer face up, and then you can see the two types of buzzer are

different - the buzzer with a green circuit board onside is a passive one.

In this lesson, the buzzer we used is active buzzer. Active buzzers will beep as long as

they are powered. We can program to make the Raspberry Pi output alternating high

and low levels to make the buzzer beep.

A slightly larger current is needed to make a buzzer beep. However, the output current

of Raspberry Pi GPIO is too low, so we need a transistor to help.

The main function of a transistor is to enlarge the voltage or current. It can also be

used to control the circuit conduction or deadline. Transistors can be divided into two

kinds: NPN, like the S8050 we provided; PNP, like the S8550 provided. The transistor

we use is as shown below:

- 17 -

There are two kinds of driving circuit for the buzzer:

 Figure 1 Figure 2

Figure 1: Set the Raspberry Pi GPIO as a high level. Then the transistor S8050 will

conduct and the buzzer will make sounds. Set the GPIO as low. And the transistor

S8050 will be de-energized and the buzzer stops beeping.

Figure 2: Set the Raspberry Pi GPIO as low level. The transistor S8550 will be energized

and the buzzer will beep. Set the GPIO as a high. Then the transistor S8550 will be

de-energized and the buzzer beeping will stop.

Procedures

Step 1: Build the circuit

- 18 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/02_ativeBuzzer/buzzer.c)

Step 3: Compile

$ gcc buzzer.c -o buzzer -lwiringPi

Step 4: Run

$ sudo ./buzzer

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/02_activeBuzzer.py)

Step 3: Run

$ sudo python 02_activeBuzzer.py

Now you can hear the buzzer beeping.

Summary

After learning this lesson, you can master the basic principle of the buzzer and

transistor. Also you've learned how to program the Raspberry Pi and then control the

buzzer. Now you can use what you've learned in this lesson to make some interesting

things!

- 19 -

Lesson 3 Passive Buzzer

Overview

In this lesson, we will learn how to program the Raspberry Pi to make a passive buzzer

beep with different frequencies.

Components

- 1* Raspberry Pi

- 1* Passive buzzer

- 1* 1 kΩ Resistor

- 1* NPN Transistor (S8050)

- 1* Breadboard

- Several jumper wires

Principle

As long as you send the square wave signals to a passive buzzer with different

frequencies, the passive buzzer will make different sounds.

In this experiment, we continuously send different square wave signals to a passive

buzzer so as to make it play a piece of music.

Key functions

For C language users:

● int softToneCreate (int pin)

This creates a software controlled tone pin. You can use any GPIO pin and the pin

numbering will be that of the wiringPiSetup() function you used.

The return value is 0 for success. Anything else and you should check the global errno

variable to see what went wrong.

● void softToneWrite (int pin, int freq)

This updates the tone frequency value on the given pin. The tone will be played until

you set the frequency to 0.

For Python users:

- 20 -

● GPIO.cleanup()

At the end any program, it is good practice to clean up any resources you might have

used. This is no different with RPi.GPIO. By returning all channels you have used back

to inputs with no pull up/down, you can avoid accidental damage to your RPi by

shorting out the pins. Note that this will only clean up GPIO channels that your script

has used. Note that GPIO.cleanup() also clears the pin numbering system in use.

● p = GPIO.PWM(channel, frequency)

To create a PWM instance

● p.start(dc)

To start PWM.

● p.ChangeFrequency(freq)

To change the frequency.

● p.stop()

To stop PWM.

Procedures

Step 1: Build the circuit

- 21 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/03_passiveBuzzer/passiveBuzzer.c)

Step 3: Compile

$ gcc passiveBuzzer.c -o passiveBuzzer –lwiringPi -lpthread

Step 4: Run

$ sudo ./passiveBuzzer

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/03_passiveBuzzer.py)

Step 3: Run

$ sudo python 03_passiveBuzzer.py

Now, you can hear the sounds of the buzzer – in varying "rhythms".

- 22 -

Lesson 4 Tilt Switch

Overview

In this lesson, we will learn how to use the tilt switch and change the status of an LED

by changing the tilt angle of the tilt switch.

Components

- 1* Raspberry Pi

- 1* Tilt switch

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

The tilt switch is also called ball switch. When the switch is tilted at a specific angle, the

contacts will be connected, while tilting the switch back will cause the metallic ball to

move away from that set of contacts, thus breaking the circuit.

Procedures

Step 1: Build the circuit

For C language users:

- 23 -

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/04_tiltSwitch/tiltSwitch.c)

Step 3: Compile

$ gcc tiltSwitch.c -o tiltSwitch -lwiringPi

Step 4: Run

 $ sudo ./tiltSwitch

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/04_tiltSwitch.py)

Step 3: Run

 $ sudo python 04_tiltSwitch.py

Now, tilt the breadboard at a certain angle, and you will see the state of LED changed.

Summary

In this lesson, we have learned the principle and application of the tilt switch. It is a

very simple electronic component, but simple devices can often make interesting

things. Try to make your own works!

- 24 -

Lesson 5 Controlling an LED by Button

Overview

In this lesson, we will learn how to detect the status of a button, and then toggle the

status of the LED based on the status of the button.

Components

- 1* Raspberry Pi

- 1* Button

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

1. Button

Buttons are a common component used to control electronic devices. They are usually

used as switches to connect or disconnect circuits. Although buttons come in a variety

of sizes and shapes, the one used in this experiment will be a 12mm button as shown

below.

The button we used is a normally open type one. The two contacts of a button are in

the off state under the normal conditions; only when the button is pressed they are

closed.

The schematic diagram is as follows:

The button jitter must happen in the process of using. The jitter waveform is as the

flowing:

- 25 -

Each time you press the button, the Raspberry Pi will regard you have pressed the

button many times due to the jitter of the button. You should deal with the jitter of

buttons before using. You can eliminate the jitter through software programming.

Besides, you can use a capacitor to solve the issue. Take the software method for

example. First, detect whether the level of button interface is low level or high level. If

it is low level, 5~10 MS delay is needed. Then detect whether the level of button

interface is low or high. If the signal is low, you can infer that the button is pressed

once. You can also use a 0.1uF capacitor to avoid the jitter of buttons. The schematic

diagram is as shown below:

2. Interrupt

Hardware interrupts were introduced as a way to reduce wasting the processor's

valuable time in polling loops, waiting for external events. They may be implemented

in hardware as a distinct system with control lines, or they may be integrated into the

memory subsystem.

3. Key functions:

For C language users:

● void pullUpDnControl (int pin, int pud)

This sets the pull-up or pull-down resistor mode on the given pin, which should be set

as an input. Unlike the Arduino, the BCM2835 has both pull-up a down internal

resistors. The parameter pud should be; PUD_OFF, (no pull up/down), PUD_DOWN

(pull to ground) or PUD_UP (pull to 3.3v). The internal pull up/down resistors have a

value of approximately 50KΩ on the Raspberry Pi.

This function has no effect on the Raspberry Pi‟s GPIO pins when in Sys mode. If you

need to activate a pull-up/pull-down, then you can do it with the gpio program in a

script before you start your program.

● int digitalRead (int pin)

This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0)

depending on the logic level at the pin.

● int wiringPiISR (int pin, int edgeType, void (*function)(void))

This function registers a function to received interrupts on the specified pin. The

edgeType parameter is either INT_EDGE_FALLING, INT_EDGE_RISING, INT_EDGE_BOTH

or INT_EDGE_SETUP. If it is INT_EDGE_SETUP then no initialisation of the pin will

happen – it‟s assumed that you have already setup the pin elsewhere (e.g. with the

gpio program), but if you specify one of the other types, then the pin will be exported

and initialised as specified. This is accomplished via a suitable call to the gpio utility

program, so it need to be available.

- 26 -

The pin number is supplied in the current mode – native wiringPi, BCM_GPIO, physical

or Sys modes.

This function will work in any mode, and does not need root privileges to work.

The function will be called when the interrupt triggers. When it is triggered, it‟s cleared

in the dispatcher before calling your function, so if a subsequent interrupt fires before

you finish your handler, then it won‟t be missed. (However it can only track one more

interrupt, if more than one interrupt fires while one is being handled then they will be

ignored)

This function is run at a high priority (if the program is run using sudo, or as root) and

executes concurrently with the main program. It has full access to all the global

variables, open file handles and so on.

For Python users:

● GPIO.input(channel)

This is used for reading the value of a GPIO pin. Where channel is the channel number

based on the numbering system you have specified (BOARD or BCM)). This will return

either 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

● GPIO.add_event_detect(channel, mode)

The event_detected() function is designed to be used in a loop with other things, but

unlike polling it is not going to miss the change in state of an input while the CPU is

busy working on other things. This could be useful when using something like Pygame

or PyQt where there is a main loop listening and responding to GUI events in a timely

basis.

Procedures

Step 1: Build the circuit

- 27 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/05_btnAndLed/btnAndLed_2.c)

Step 3: Compile

$ gcc btnAndLed_2.c -o btnAndLed -lwiringPi

Step 4: Run

$ sudo ./btnAndLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/05_btnAndLed_1.py)

Step 3: Run

$ sudo python 05_btnAndLed_2.py

Now press the button, and you can see the state of the LED will be toggled between

ON and OFF.

Summary

Through this lesson, you should have learned how to use the Raspberry Pi to detect

the status of an external button, and then toggle the status of LED on/off relying on

the status of the button detected before.

- 28 -

Lesson 6 Relay

Overview

In this lesson, we will learn how to control a relay to break or connect a circuit.

Components

- 1* Raspberry Pi

- 1* Relay

- 1* NPN Transistor (S8050)

- 1* Diode (1N4001)

- 1* 1KΩ Resistor

- 1* Breadboard

- Several jumper wires

Principle

A relay is an electrically operated switch. It is generally used in automatic control

circuit. Actually, it is an "automatic switch" which uses low current to control high

current. It plays a role of automatic regulation, security protection and circuit switch.

When an electric current is passed through the coil it generates a magnetic field that

activates the armature, and the consequent movement of the movable contact (s)

either makes or breaks (depending upon construction) a connection with a fixed

contact. If the set of contacts was closed when the relay was de-energized, then the

movement opens the contacts and breaks the connection, and vice versa if the

contacts were open. When the current to the coil is switched off, the armature is

returned by a force, approximately half as strong as the magnetic force, to its relaxed

position. Usually this force is provided by a spring, but gravity is also used commonly

in industrial motor starters. Most relays are manufactured to operate quickly. In a

low-voltage application this reduces noise; in a high voltage or current application it

reduces arcing.

When the coil is energized with direct current, a diode is often placed across the coil

to dissipate the energy from the collapsing magnetic field at deactivation, which

would otherwise generate a voltage spike dangerous to semiconductor circuit

components.

Procedures

Step 1: Build the circuit

- 29 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/06_relay/relay.c)

Step 3: Compile

$ gcc relay.c -o relay -lwiringPi

Step 4: Run

$ sudo ./relay

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/06_relay.py)

Step 3: Run

$ sudo python 06_relay.py

Now you can hear tick-tocks, which are the sounds of relay toggling.

- 30 -

- 31 -

Lesson 7 LED Flowing Lights

Overview

In the first lesson, we have learned how to make an LED blink by programming the

Raspberry Pi. Now we will use the Raspberry Pi to control 8 LEDs, to make 8 LEDs

show the effects of flowing.

Components

- 1* Raspberry Pi

- 8* LED

- 8* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

The principle of this experiment is very simple and quite similar with that in the first

lesson.

Key function:

● for statements

The for statement is used to repeat a block of statements enclosed in curly braces. An

increment counter is usually used to increment and terminate the loop. The for

statement is useful for any repetitive operation, and is often used in combination with

arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);

}

The initialization happens first and exactly once. Each time through the loop, the

- 32 -

condition is tested; if it's true, the statement block, and the increment is executed,

then the condition is tested again. When the condition becomes false, the loop ends.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/07_flowingLed/flowingLed.c)

Step 3: Compile

$ gcc flowingLed.c -o flowingLed -lwiringPi

Step 4: Run

 $ sudo ./flowingLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/07_flowingLed.py)

Step 3: Run

 $ sudo python 07_flowingLed.py

Now, you can see 8 LEDs light up in sequence from the red one on the right side to

- 33 -

others on the left, and next from the left to the right. The LEDs flash like flowing water

repeatedly in a circular way.

Summary

Through this simple but fun experiment, you should have learned more skills in

programming on Raspberry Pi. In addition, you can also modify the circuit and code

provided to achieve even more dazzling effects.

- 34 -

Lesson 8 Breathing LED

Overview

In this lesson, we will learn how to program the Raspberry Pi to generate PWM signals.

And then we use the PWM square-wave signals to control an LED gradually getting

brighter and then slowly dimmer, much like human breath.

Components

- 1* Raspberry Pi

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital

means. Digital control is used to create a square wave, a signal switched between on

and off. This on-off pattern can simulate voltages in between full on (5 Volts) and off (0

Volts) by changing the portion of the time the signal spends on versus the time that

the signal spends off. The duration of "on time" is called the pulse width. To get

varying analog values, you change, or modulate, that pulse width. If you repeat this

on-off pattern fast enough with an LED for example, the result is as if the signal is a

steady voltage between 0 and 5v controlling the brightness of the LED.

In the following figure, the green lines represent a regular time period. This duration

or period is the inverse of the PWM frequency. In other words, with Raspberry Pi's

PWM frequency at about 500Hz, the green lines would measure 2 milliseconds each. A

call to pwmWrite() is on a scale of 0-1023, such that pwmWrite(1023) requests a 100%

duty cycle (always on), and pwmWrite(511) is a 50% duty cycle (on half the time) for

example.

- 35 -

Key functions:

For C language users:

● pwmWrite(int pin, int value)

Writes the value to the PWM register for the given pin. The Raspberry Pi has one

on-board PWM pin, pin 1 (BMC_GPIO 18, Phys 12) and the range is 0-1024. Other

PWM devices may have other PWM ranges.

This function is not able to control the Pi‟s on-board PWM when in Sys mode.

For Python users:

● p = GPIO.PWM(channel, frequency)

This is used for creating a PWM.

● p.start(dc)

Start the pwm you have created.

● p.ChangeFrequency(freq)

Change the frequency of pwm.

● p.stop()

Stop the pwm.

Procedures

Step 1: Build the circuit

- 36 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/08_breathingLed/breathingLed.c)

Step 3: Compile

$ gcc breathingLed.c -o breathingLed -lwiringPi

Step 4: Run

 $ sudo ./breathingLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi /08_breathingLed.py)

Step 3: Run

 $ sudo python 08_breathingLed.py

Now, you should see the LED lights up and gets gradually brighter, and then slowly

turns dimmer. The process repeats circularly, and with the particular rhythm it looks

like animals' breath.

Summary

By learning this lesson, you should have mastered the basic principles of the PWM,

and get skilled at the PWM programming on the Raspberry Pi platform.

- 37 -

Lesson 9 Controlling an RGB LED with PWM

Overview

In this lesson, we will program the Raspberry Pi for RGB LED control, and make the

RGB LED emit light of various colors.

Components

- 1* Raspberry Pi

- 1* RGB LED

- 3* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

RGB LEDs consist of three LEDs in different colors: red, green and blue. These three

colored LEDs are capable of producing any color. Tri-color LEDs with red, green, and

blue emitters, in general use a four-wire connection with one common lead (anode or

cathode).

What we use in this experiment is a common anode RGB LED. The longest pin is the

common anode of the three LEDs. The pin is connected to the +3.3V pin of the

Raspberry Pi, and the rest pins are connected to pin 11, pin 12, and pin 13 of

Raspberry Pi with a current limiting resistor between.

In this way, we can control the color of the RGB LED by 3-channel PWM signal.

Key functions:

● int softPwmCreate (int pin, int initialValue, int pwmRange)

This creates a software controlled PWM pin. You can use any GPIO pin and the pin

numbering will be that of the wiringPiSetup() function you used. Use 100 for the

pwmRange, then the value can be anything from 0 (off) to 100 (fully on) for the given

pin.

The return value is 0 for success. Anything else and you should check the global errno

variable to see what went wrong.

● void softPwmWrite (int pin, int value)

- 38 -

This updates the PWM value on the given pin. The value is checked to be in-range and

pins that haven‟t previously been initialised via softPwmCreate will be silently ignored.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/09_rgbLed/rgbLed.c)

Step 3: Compile

$ gcc rgbLed.c -o rgbLed -lwiringPi -lpthread

NOTE: The compiler option „-lpthread‟ is required because the implementation of

softPwm is based on Linux multithreading.

Step 4: Run

 $ sudo ./rgbLed

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/09_rgbLed.py)

Step 3: Run

- 39 -

$ sudo python 09_rgbLedLed.py

Now, you can see the RGB LED flashing red, green, blue, yellow, white and purple light,

and then the RGB LED goes out. Each state lasts for 1s each time, and the LED flashes

colors repeatedly in such sequence.

Summary

By learning this lesson, you should have already got the principle and the

programming of RGB LED. Now you can use your imagination to achieve even more

cool ideas based on what you learned in this lesson.

- 40 -

Lesson 10 7-Segment Display

Overview

In this lesson, we will program the Raspberry Pi to achieve the controlling of a

segment display.

Components

- 1* Raspberry Pi

- 1* 220Ω Resistor

- 1* 7-Segment display

- 1* Breadboard

- Several jumper wires

Principle

The seven-segment display is a form of electronic display device for displaying

decimal numerals that is an alternative to the more complex dot matrix displays.

Seven-segment displays are widely used in digital clocks, electronic meters, basic

calculators, and other electronic devices that display numerical information.

The seven-segment display is an 8-shaped LED display device composed of eight LEDs

(including a decimal point). The segments are named respectively a, b, c, d, e, f, g, and dp.

The segment display can be divided into two types: common anode and common

cathode segment displays, by internal connections.

For a common-anode LED, the common anode should be connected to the power supply

(VCC); for a common-cathode LED, the common cathode should be connected to the

ground (GND).

Each segment of a segment display is composed of an LED, so a resistor is needed for

protecting the LED.

A 7-segment display has seven segments for displaying a figure and one more for

displaying a decimal point. For example, if you want to display a number „1‟, you should

only light the segment b and c, as shown below.

- 41 -

Key function:

● void digitalWriteByte (int value)

This writes the 8-bit byte supplied to the first 8 GPIO pins. It‟s the fastest way to set all 8

bits at once to a particular value, although it still takes two write operations to the Pi‟s

GPIO hardware.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/10_segment/segment.c)

Step 3: Compile

 $ gcc segment.c -o segment -lwiringPi

- 42 -

Step 4: Run

$ sudo ./segment

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/10_segment.py)

Step 3: Run

$ sudo python 10_segment.py

Now, you should see the number 0~9 and character A~F are displayed in turn on the

segment display.

Summary

Through this lesson, you should have learned the principle and programming of the

segment display. You can use what you've learned in the previous lessons to modify

the code provided in this lesson to make cooler works.

- 43 -

Lesson 11 4-Digit 7-Segment Display

Overview

In this lesson, we will program the Raspberry Pi to control a 4-digit 7-segment display.

Components

- 1* Raspberry Pi

- 4* 220Ω Resistor

- 1* 4-digit 7-segment display

- 1* Breadboard

- Several jumper wires

Principle

The four-digit segment display is a form of electronic display device for displaying

decimal numerals that is an alternative to the more complex dot matrix displays.

Four-digit segment displays are widely used in digital clocks, electronic meters, basic

calculators, and other electronic devices that display numerical information.

The four-digit segment display is a 4*8-shaped LED display device composed of 32

LEDs (including four decimal points). The segments are named respectively a, b, c, d, e, f,

g, h, dig1, dig2, dig3, and dig4.

What we use in this experiment is a common-cathode 4-digit 7-segment display. Its

internal structure is as shown below:

The pin number is as follows:

- 44 -

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/11_4bitSegment/fourBitSegment.c)

Step 3: Compile

 $ gcc fourBitSegment.c -o fourBitSegment -lwiringPi

Step 4: Run

$ sudo ./fourBitSegment

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/11_fourBitSegment.py)

Step 3: Run

$ sudo python 11_fourBitSegment.py

Now, you should see the number displayed on the segment display.

- 45 -

- 46 -

Lesson 12 LCD1602

Overview

In this lesson, we will learn how to use a character display device - LCD1602 on the

Raspberry Pi platform. We first make the LCD1602 display a string "Hello Geeks!"

scrolling, and then display “Adeept” and “www.adeept.com” statically.

Components

- 1* Raspberry Pi

- 1* LCD1602

- 1* 10KΩ Potentiometer

- 1* Breadboard

- Several jumper wires

Principle

LCD1602 is a kind of character LCD display. The LCD has a parallel interface, meaning

that the microcontroller has to manipulate several interface pins at once to control the

display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're writing

data to. You can select either the data register, which holds what goes on the screen,

or an instruction register, which is where the LCD's controller looks for instructions on

what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The status of these pins (high or low) is the bits that you're

writing to a register when you write, or the values when you read.

● There are also a display contrast pin (Vo), power supply pins (+5V and Gnd) and LED

Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD, control the display

contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the image of

what you want to display into the data registers, then putting instructions in the

instruction register. The wiringPiDev Library simplifies this for you, so you don't need

to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit

mode requires six I/O pins from the Raspberry Pi, while the 8-bit mode requires 10

pins. For displaying text on the screen, you can do most everything in 4-bit mode, so

example shows how to control a 2x16 LCD in 4-bit mode.

A potentiometer, informally a pot, is a three-terminal resistor with a sliding or rotating

contact that forms an adjustable voltage divider. If only two terminals are used, one

end and the wiper, it acts as a variable resistor or rheostat.

http://www.adeept.com/
query:potentiometer

- 47 -

Key functions:

● int lcdInit (int rows, int cols, int bits, int rs, int strb, int d0, int d1, int d2, int d3, int

d4, int d5, int d6, int d7)

This is the main initialisation function and must be called before you use any other

LCD functions.

Rows and cols are the rows and columns on the display (e.g. 2, 16 or 4,20). Bits is the

number of bits wide on the interface (4 or 8). The rs and strb represent the pin

numbers of the displays RS pin and Strobe (E) pin. The parameters d0 through d7 are

the pin numbers of the 8 data pins connected from the Pi to the display. Only the first

4 are used if you are running the display in 4-bit mode.

The return value is the „handle‟ to be used for all subsequent calls to the lcd library

when dealing with that LCD, or -1 to indicate a fault. (Usually incorrect parameters)

● lcdPosition (int handle, int x, int y)

Set the position of the cursor for subsequent text entry. x is the column and 0 is the

left-most edge. y is the line and 0 is the top line.

● lcdPuts (int handle, const char *string)

● lcdPrintf (int handle, const char *message, …)

● lcdPutchar (int handle, unsigned char data)

These output a single ASCII character, a string or a formatted string using the usual

printf formatting commands.

At the moment, there is no clever scrolling of the screen, but long lines will wrap to

the next line, if necessary.

Procedures

Step 1: Build the circuit

- 48 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/12_lcd1602/lcd1602_2.c)

Step 3: Compile

$ gcc lcd1602_2.c -o lcd1602_2 -lwiringPi -lwiringPiDev

Step 4: Run

 $ sudo ./lcd1602_2

Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/12_lcd1602.py)

Step 3: Run

 $ sudo python 12_lcd1602.py

Now, you can see the string "Hello Geeks!" shown on the LCD1602 scrolling, and then

the string "Adeept" and "www.adeept.com" displayed statically.

http://www.adeept.com/

- 49 -

Summary

After learning the experiment, you should have already mastered the driver of the

LCD1602. Now you can make something more interesting based on this lesson and the

previous lessons learned.

- 50 -

Lesson 13 Matrix Keyboard

Overview

In this lesson, we will learn how to use a matrix keyboard.

Components

- 1* Raspberry Pi

- 1* 4x4 Matrix Keyboard

- Several jumper wires

Principle

In order to save the resources of the microcontroller ports, we usually connect the

buttons of a matrix in practical projects.

See the following figure for the schematics of a 4x4 matrix keyboard:

Procedures

Step 1: Build the circuit

- 51 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/13_matrixKeyboard/matrixKeyboard.c)

Step 3: Compile

$ gcc matrixKeyboard.c -o matrixKeyboard -lwiringPi

Step 4: Run

 $ sudo ./matrixKeyboard

- 52 -

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/13_matrixKeyboard.py)

Step 3: Run

 $ sudo python 13_ matrixKeyboard.py

Now, press one of the buttons on the 4x4 matrix keyboard, and you will see the

corresponding key value displayed on the terminal.

- 53 -

Lesson 14 Measuring the Distance

Overview

In this lesson, we will learn how to measure the distance by an ultrasonic distance

sensor.

Components

- 1* Raspberry Pi

- 1* Ultrasonic distance sensor

- 1* Breadboard

- Several jumper wires

Principle

This recipe uses the popular Parallax PING ultrasonic distance sensor to measure the

distance to an object ranging from 2cm to around 3m. This sensor works by sending a

sound wave out and calculating the time it takes to get back. By doing this, it can tell

us how far away an obstacle is to the ultrasonic sensor.

Procedures

Step 1: Build the circuit

- 54 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/14_ultrasonicSensor/distance.c)

Step 3: Compile

$ gcc distance.c -o distance -lwiringPi

Step 4: Run

 $ sudo ./distance

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/14_distance.py)

Step 3: Run

 $ sudo python 14_distance.py

Now, you will see the distance between the obstacle and the ultrasonic sensor

displayed on the screen.

- 55 -

Lesson 15 Temperature & Humidity Sensor – DHT-11

Overview

In this lesson, we will learn how to use DHT-11 to collect temperature and humidity

data.

Components

- 1* Raspberry Pi

- 1* DHT-11

- 1* Breadboard

- Several jumper wires

Principle

This DHT-11 temperature & humidity sensor features a temperature & humidity

sensor complex with a calibrated digital signal output. By using the exclusive digital

signal acquisition technique and temperature & humidity sensing technology, it

ensures high reliability and excellent long-term stability. This sensor includes a

resistive-type humidity measurement component and an NTC temperature

measurement component, and connects to a high-performance 8-bit microcontroller,

offering excellent quality, fast response, anti-interference ability and

cost-effectiveness.

Procedures

Step 1: Build the circuit

- 56 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/15_DHT11/dht11.c)

Step 3: Compile

$ gcc dht11.c -o dht11 -lwiringPi

Step 4: Run

 $ sudo ./dht11

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/15_dht11.py)

Step 3: Run

 $ sudo python 15_dht11.py

Now, you can see the temperature and humidity data displayed on the terminal.

- 57 -

- 58 -

Lesson 16 Dot-matrix Display

Overview

In this lesson, we will program to control an 8*8 dot-matrix display to display the

graphs and numbers as we want to.

Components

- 1* Raspberry Pi

- 1* 8*8 Dot-matrix display

- 2* 74HC595

- 1* Breadboard

- Several jumper wires

Principle

1. Dot-matrix display

A dot-matrix display is a display device used to display information on machines,

clocks, railway departure indicators and many other devices requiring a simple display

device of limited resolution.

The display consists of a dot-matrix of lights or mechanical indicators arranged in a

rectangular configuration (other shapes are also possible, although not common) such

that by switching on or off selected lights, text or graphics can be displayed. A

dot-matrix controller converts instructions from a processor into signals which turns

on or off lights in the matrix so that the required display is produced.

The internal structure and appearance of the dot-matrix display is as shown below:

An 8*8 dot-matrix display consists of 64 LEDs, and each LED is placed at the

intersection of the lines and columns. When the corresponding row is set as high level

and the column as low level, the LED will be lit.

A certain drive current is required for the dot-matrix display. In addition, more pins are

needed for connecting the dot-matrix display with a controller. Thus, to save the

Raspberry Pi‟s GPIOs, the driver IC 74HC595 is used in this experiment.

- 59 -

2. 74HC595

The 74HC595 is an 8-stage serial shift register with a storage register and 3-state

outputs. The shift register and storage register have separate clocks. Data is shifted on

the positive-going transitions of the SH_CP input. The data in each register is

transferred to the storage register on a positive-going transition of the ST_CP input.

The shift register has a serial input (DS) and a serial standard output (Q7‟) for

cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift

register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in

the storage register appears at the output whenever the output enable input (OE) is

LOW.

In this experiment, only 3 pins of the Raspberry Pi are used for controlling the

dot-matrix display thanks to the 74HC595.

The function of each pin:

DS: Serial data input

Q0-Q7: 8-bit parallel data output

Q7‟: Series data output pin, always connected to DS pin of the next 74HC595

OE: Output enable pin, effective at low level, connected to the ground directly

MR: Reset pin, effective at low level, directly connected to 5V high level in practical

applications

SH_CP: Shift register clock input

ST_CP: storage register clock input

Procedures

Step 1: Build the circuit (Make sure that the circuit connection is correct and then

power on, otherwise it may cause the chips burned.)

- 60 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/16_ledMatrix/ledMatrix.c)

Step 3: Compile

$ gcc ledMatrix.c -o ledMatrix -lwiringPi

Step 4: Run

 $ sudo ./ledMatrix

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/16_ledMatrix.py)

Step 3: Run

 $ sudo python 16_ledMatrix.py

Now, you can see a rolling character “Adeept” displayed on the dot-matrix display.

- 61 -

Summary

In this experiment, we have not only learned how to use a dot-matrix display to

display numbers and letters, but also learned the basic usage of 74HC595. Next you

can try utilizing the dot-matrix display to show more effects.

- 62 -

Lesson 17 Photoresistor

Overview

In this lesson, we will learn how to measure the light intensity by photoresistor and

display the measurement result on the screen.

Components

- 1* Raspberry Pi

- 1* ADC0832

- 1* Photoresistor

- 1* 10KΩ Resistor

- 1* Breadboard

- Several jumper wires

Principle

A photoresistor is a light-controlled variable resistor. The resistance of a photoresistor

decreases with the increasing incident light intensity; in other words, it exhibits

photoconductivity. A photoresistor can be applied in light-sensitive detector circuits.

A photoresistor is made of a high resistance semiconductor. In the dark, it can show a

resistance as high as a few megohms (MΩ), while in the light, its resistance can be as

low as a few hundred ohms. If the incident light on a photoresistor exceeds a certain

frequency, photons absorbed by the semiconductor will give bound electrons enough

energy to jump into the conduction band. The resulting free electrons (and their hole

partners) conduct electricity, thereby lowering the resistance. The resistance range and

sensitivity of a photoresistor can substantially differ among dissimilar devices.

Moreover, unique photoresistors may react substantially differently to photons within

certain wavelength bands.

The schematic diagram of this experiment is as shown below:

With the increase of the light intensity, the resistance of the photoresistor will decrease.

The voltage of the GPIO port in the above figure will become high.

Procedures

Step 1: Build the circuit

- 63 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/17_photoresistor/photoresistor.c)

Step 3: Compile

$ gcc photoresistor.c -o photoresistor -lwiringPi

Step 4: Run

$ sudo ./photoresistor

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/17_photoresistor.py)

Step 3: Run

$ sudo python 17_photoresistor.py

Now, when you try to cover the photoresistor, you will find that the value displayed on

the screen decreasing. On the contrary, when you shine the photoresistor with strong

light, the value displayed will increase.

- 64 -

Summary

By learning this lesson, you should have learned how to detect the ambient light

intensity with the photoresistor. You can take full advantage of your own wisdom and

make more original works based on your gains in this and previous experiments.

- 65 -

Lesson 18 Thermistor

Overview

In this lesson, we will learn how to use a thermistor to collect the temperature data by

programming the Raspberry Pi and ADC0832.

Components

- 1* Raspberry Pi

- 1* ADC0832

- 1* Thermistor

- 1* 10KΩ Resistor

- 1* Breadboard

- Several jumper wires

Principle

A thermistor is a type of resistor whose resistance varies significantly with temperature,

more so than in standard resistors. When the temperature increases, the thermistor

resistance decreases; when the temperature decreases, the thermistor resistance increases.

It can detect the ambient temperature changes in real time. In the experiment, we need an

analog-digital converter ADC0832 to convert analog signal into digital signal.

Procedures

Step 1: Build the circuit

- 66 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/18_thermistor/thermistor.c)

Step 3: Compile

$ gcc thermistor.c -o thermistor -lwiringPi

Step 4: Run

$ sudo ./thermistor

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/18_thermistor.py)

Step 3: Run

$ sudo python 18_thermistor.py

Now, touch the thermistor and you can see the current temperature value displayed

on the screen, which changes accordingly.

- 67 -

- 68 -

Lesson 19 RFID

Overview

In this lesson, we will learn how to use an RFID Module. We program the Raspberry Pi to

read the data acquired by the RFID module, and then display the ID data on the terminal.

Components

- 1* Raspberry Pi

- 1* RFID module

- 1* ID Card

- 1* Special-shaped ID Card

- Several jumper wires

Principle

The RFID technology is used for a wide variety of applications including access control,

package identification, warehouse stock control, point-of-sale scanning, retail antitheft

systems, toll-road passes, surgical instrument inventory, and even for identifying individual

sheets of paper placed on a desk. RFID tags are embedded in name badges, shipping

labels, library books, product tags and boxes; installed in aircraft; hidden inside car keys;

and implanted under the skin of animals or even people. RFID systems work on a wide

range of frequencies, have a variety of modulation and encoding schemes, and vary from

low-power passive devices with range of only a few millimeters to active systems that work

for hundreds of kilometers.

However, all RFID systems have the same basic two-part architecture: a reader and a

transponder. The reader is an active device that sends out a signal and listens for

responses, and the transponder (the part generally called the “tag”) detects the signal

from a reader and automatically sends back a response containing its identity code.

A reader can be like this:

A transponder:

- 69 -

Different types of RFID tags fall into one of the three broad categories: active, passive, and

battery-assisted passive.

Active tags are physically large because they require their own power supply such as a

battery. They can also have a very long range because the availability of local power allows

them to send high-powered responses that can travel from tens of meters to hundreds of

kilometers. An active tag is essentially a combination of a radio receiver to detect the

challenge, some logic to formulate a response, and a radio transmitter to send back the

response. They can even have the challenge and response signals operate on totally

different frequencies. The downsides are the size of the tag, a high manufacturing cost

due to the number of parts required, and the reliance on a battery that will go flat

eventually.

Passive tags can be much smaller and cheaper than active tags because they don‟t require

a local power supply and have much simpler circuitry. Instead of supplying their own

power, they leach all the power they need from the signal sent by the reader. Early passive

tags operated on the “Wiegand effect,” which uses a specially formed wire to convert

received electromagnetic energy into radio-wave pulses. Some early passive RFID tags

actually consisted of nothing more than a number of very carefully formed wires made

from a combination of cobalt, iron, and vanadium, with no other parts at all.

Modern passive tags use a clever technique that uses current induced in their antenna coil

to power the electronics required to generate the response. The response is then sent by

modulating the reader‟s own field, and the reader detects the modulation as a tiny

fluctuation in the voltage across the transmitter coil. The result is that passive tags can be

incredibly small and extremely inexpensive: the antenna can be a simple piece of metal foil,

and the microchips are produced in such large quantities that a complete RFID-enabled

product label could cost only a few cents and be no thicker than a normal paper label.

Passive tags can theoretically last indefinitely because they don‟t contain a battery to go

flat, but their disadvantage is a very short operational range due to the requirement to

leach power from the reader‟s signal, and lack of an actively powered transmitter to send

back the response.

Passive tags typically operate over a range of a few millimeters up to a few meters.

Tags can also have a variety of different modulation schemes, including AM, PSK, and ASK,

and different encoding systems. With so many incompatible variations, it‟s sometimes

hard to know if specific tags and readers are compatible. Generally speaking, each type of

tag will only function on one specific frequency, modulation scheme, and communications

protocol. Readers, on the other hand, are far more flexible and will often support a range

of modulation schemes and comms protocols, but are usually still limited to just one

frequency due to the tuning requirements of the coil.

Apart from the specific requirements for communicating with them, tags can also have a

number of different features. The most common passive tags simply contain a hard-coded

unique serial number and when interrogated by a reader they automatically respond with

their ID code. Most tags are read-only so you can‟t change the value they return, but some

types of tags are read/write and contain a tiny amount of rewritable storage so you can

insert data into them using a reader and retrieve it later. However, most uses of RFID don‟t

rely on any storage within the tag, and merely use the ID code of the tag as a reference

number to look up information about it in an external database or other system.

RFID tags are produced in a wide variety of physical form factors to suit different

- 70 -

deployment requirements. The most commonly seen form factor is a flat plastic card the

same size as a credit card, often used as an access control pass to gain access to office

buildings or other secure areas. The most common form by sheer number produced, even

though you might not notice them, is RFID-enabled stickers that are commonly placed on

boxes, packages, and products. Key fob tags are also quite common, designed to be

attached to a keyring so they‟re always handy for operating access control systems.

Procedures

Step 1: Build the circuit

- 71 -

Step 2: The Raspberry communicates with the RC522 RFID module via the SPI

interface. The interface is not enabled by default, and need some extra configuration

before you can use it. You can use raspi-config to enable it.

$ sudo raspi-config

Use the down arrow to select “5 Interfacing Options”

Arrow down to “P4 SPI”

Select “Yes” when it asks you to enable SPI.

- 72 -

Also select “Yes” when it tasks about automatically loading the kernel module.

Use the right arrow to select the “Finish” button.

Select “Yes” when it asks to reboot.

The system will reboot. When it comes back up, log in and enter the following command:

$ ls /dev/spi*

The Pi should respond with

/dev/spidev0.0 /dev/spidev0.1

These represent SPI devices on chip enable pins 0 and 1, respectively. These pins are

hardwired within the Pi. Ordinarily, this means the interface supports at most two

peripherals, but there are cases where multiple devices can be daisy-chained, sharing a

single chip enable signal.

For C language users:

Step 3: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/19_RFID)

Step 4: Compile

sudo ./compile.sh

- 73 -

Step 5: Run

sudo ./rfid_test

RC522>scan

Now, put the ID card close to the RFID reader and you can see the ID number sent to the

terminal.

For Python users:

Step 3: Install the header files and static libraries for python dev

$ sudo apt-get install python-dev python3-dev

- 74 -

Step 4: Install SPI Python Module

$ sudo git clone https://github.com/lthiery/SPI-Py.git

$ cd SPI-Py

$ sudo python setup.py install

- 75 -

Step 5: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/19_RFID/MFRC522-python/)

Step 6: Run

$ sudo python Read.py

Now, put the ID card close to the RFID reader and you can see the ID number sent to

the terminal.

- 76 -

- 77 -

Lesson 20 LED Bar Graph

Overview

In this lesson, we will learn how to control an LED bar graph by programming the

Raspberry Pi.

Components

- 1* Raspberry Pi

- 1* ADC0832

- 1* LED bar graph

- 10* 220Ω Resistor

- 1* 10KΩ Potentiometer

- 1* Breadboard

- Several jumper wires

Principle

The bar graph - a series of LEDs in a line, such as you see on an audio display - is a

common hardware display for analog sensors. It's made up of a series of LEDs in a row,

an analog input like a potentiometer, and a little code in between. You can buy

multi-LED bar graph displays fairly cheaply. This tutorial demonstrates how to control

a series of LEDs in a row, but can be applied to any series of digital outputs.

This tutorial borrows from the For Loop and Arrays tutorial as well as the Analog Input

tutorial.

The sketch works like this: first read the analog value. Map the value to the output

range which is 0-10 in this case since ten LEDs are used. As the analog value changes,

LEDs in a corresponding number will light up on the bar – the bigger the value is, the

more LEDs will be turned on.

Procedures

Step 1: Build the circuit

http://www.arduino.cc/en/Tutorial/Loop
http://www.arduino.cc/en/Tutorial/AnalogInput

- 78 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/20_ledBar/ledBar.c)

Step 3: Compile

$ gcc ledBar.c -o ledBar -lwiringPi

Step 4: Run

 $ sudo ./ledBar

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/20_ledBar/ledBar.py)

Step 3: Run

 $ sudo python ledBar.py

Now, when you turn the shaft of the potentiometer, you will see that the number of

LEDs lit in the LED bar graph changing.

- 79 -

- 75 -

Lesson 21 Controlling an LED Through LAN

Overview

In this lesson, we will introduce TCP and socket, and then how to program the Raspberry Pi to control an

LED through the local area network (LAN).

Components

- 1* Raspberry Pi

- 1* LED

- 1* 220Ω Resistor

- 1* Breadboard

- Several jumper wires

Principle

1. TCP

The Transmission Control Protocol (TCP) is a core protocol of the Internet Protocol Suite. It originated in

the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the

entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery

of a stream of octets between applications running on hosts communicating over an IP network. TCP is

the protocol that major Internet applications such as the World Wide Web, email, remote administration

and file transfer rely on. Applications that do not require reliable data stream service may use the User

Datagram Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced

latency over reliability.

2. Socket

A network socket is an endpoint of an inter-process communication across a computer network. Today,

most communication between computers is based on the Internet Protocol; therefore most network

sockets are Internet sockets.

A socket API is an application programming interface (API), usually provided by the operating system,

that allows application programs to control and use network sockets. Internet socket APIs are usually

based on the Berkeley sockets standard.

A socket address is the combination of an IP address and a port number, much like one end of a

telephone connection is the combination of a phone number and a particular extension. Based on this

address, internet sockets deliver incoming data packets to the appropriate application process or thread.

Several Internet socket types are available:

1. Datagram sockets, also known as connectionless sockets, which use User Datagram Protocol (UDP).

2. Stream sockets, also known as connection-oriented sockets, which use Transmission Control Protocol

(TCP) or Stream Control Transmission Protocol (SCTP).

3. Raw sockets (or Raw IP sockets), typically available in routers and other network equipment. Here the

transport layer is bypassed, and the packet headers are made accessible to the application.

- 76 -

In this experiment, our program is based on stream socket, and the program is divided into two parts,

the client and the server. The server routine is run on the Raspberry Pi, and the client routine is run on

the PC. So you can send command to the server through the client, and then control the LED connected

to the Raspberry Pi.

Procedures

Step 1: Build the circuit

For C language users:

Step 2: Edit and save the server code with vim or nano on the Raspberry Pi.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/21_TCPCtrlLed/ledServer.c)

Step 3: Compile(On Raspberry Pi)

$ gcc ledServer.c -o ledServer -lwiringPi

Step 4: Edit and save the client code with vim or nano on the PC.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/21_TCPCtrlLed/client.c)

Step 5: Compile (On Linux PC)

$ gcc ledClient.c -o ledClient

Step 6: Run

$ sudo ./ledServer (On Raspberry Pi)

$./ledClient 192.168.1.188 (On PC, modify the IP Address to your Raspberry Pi‟s IP Address)

Now, input “ON” in the terminal and then press Enter. The LED connected to the Raspberry Pi will light

up; input “OFF” and the LED goes out.

- 77 -

For Python users:

Step 2: Edit and save the server code with vim or nano on the Raspberry Pi.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/21_TCPCtrlLed/ledServer.py)

Step 3: Edit and save the client code with vim or nano on the PC. Modify the IP Address to your

Raspberry Pi‟s IP Address.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/12_TCPCtrlLed/ledClient.py)

Step 4: Run

 $ sudo python ledServer.py (On Raspberry Pi)

 $ python ledClient.py (On PC)

Now, input “ON” in the terminal and then press Enter. The LED connected to the Raspberry Pi will light

up; input “OFF” and the LED goes out.

- 78 -

Summary

By learning this lesson, you should have mastered the basic principles of inter-computer communication.

This lesson can help you open the door to learn the Internet of Things (IoT).

- 79 -

Lesson 22 DC Motor

Overview

In this comprehensive experiment, we will learn how to control the state of a DC motor with Raspberry Pi.

The state of DC motors includes its forward, reverse, acceleration, deceleration and stop.

Components

- 1* Raspberry Pi

- 1* L9110 DC Motor Driver

- 1* DC motor

- 4* Button

- 1* LED

- 1* 220Ω Resistor

- 1* Capacitor (104, 0.1uF)

- 1* Breadboard

- Several jumper wires

Principle

1. DC motor

A DC motor is any of a class of electrical machines that converts direct current electrical power into

mechanical power. The most common types rely on the forces produced by magnetic fields. Nearly all

types of DC motors have some internal mechanism, either electromechanical or electronic, to

periodically change the direction of current flow in part of the motor. Most types produce rotary motion;

a linear motor directly produces force and motion in a straight line.

DC motors were the first type widely used, since they could be powered from existing direct-current

lighting power distribution systems. A DC motor's speed can be controlled over a wide range, using

either a variable supply voltage or by changing the strength of current in its field windings. Small DC

motors are used in tools, toys, and appliances. The universal motor can operate on direct current but is a

lightweight motor used for portable power tools and appliances.

- 80 -

2. L9110

L9110 is a driver chip which is used to control and drive motor. The chip has two TTL/CMOS compatible

input terminals, and possesses the property of anti-interference: it has high current driving capability,

two output terminals that can directly drive DC motor, each output port can provide 750~800mA

dynamic current, and its peak current can reach 1.5~2.0A; L9110 is widely applied to various motor

drives, such as toy cars, stepper motor, power switches and other electric circuits.

OA, OB: These are used to connect the DC motor.

VCC: Power supply (+5V)

GND: The cathode of the power supply (Ground).

IA, IB: The input terminal of drive signal.

Procedures

Step 1: Build the circuit

javascript:void(0);
javascript:void(0);

- 81 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/22_motor/motor.c)

Step 3: Compile

$ gcc motor.c -o motor –lwiringPi -lpthread

Step 4: Run

 $ sudo ./motor

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/22_motor.py)

Step 3: Run

 $ sudo python 22_motor.py

Press button 1 to stop or run the DC motor; press button 2 to make the DC motor move forward or

reverse; press button 3 to accelerate the DC motor; press button 4 to decelerate the DC motor. When the

motor is running, the LED will light up. Otherwise, the LED will stay off.

- 82 -

Summary

After learning, you must have grasped the basic theory and programming of the DC motor. You can not

only make it move forward and reverse, but also regulate its speed. Besides, you can do some interesting

applications with what you've got in this lesson and the knowledge acquired previously.

- 83 -

Lesson 23 Controlling a Stepper Motor

Overview

In this lesson, we will introduce a new electronic device – stepper motor, and you can also learn how to

control it with Raspberry Pi.

Components

- 1* Raspberry Pi

- 1* Stepper motor

- 1* ULN2003 stepper motor driver module

- Several jumper wires

Principle

1. Stepper motor

Stepper motors, due to their unique design, can be controlled to a high degree of accuracy without any

feedback mechanisms. The shaft of a stepper, mounted with a series of magnets, is controlled by a series

of electromagnetic coils that are charged positively and negatively in a specific sequence, precisely

moving it forward or backward in small "steps".

There are two types of steppers, Unipolars and Bipolars, and it is very important to know which type you

are working with. In this experiment, we will use a Unipolar stepper.

2. ULN2003 driver module

The Raspberry Pi‟s GPIO cannot directly drive a stepper motor due to the weak current. Therefore, a

driver circuit is necessary for controlling a stepper motor. What we used in this experiment is a

ULN2003-based driver module. There are four LEDs on the module. The white socket in the middle is to

connect a stepper motor. IN1, IN2, IN3, IN4 are to connect with the Raspberry Pi.

Procedures

Step 1: Build the circuit

- 84 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/23_stepperMotor/stepperMotor.c)

Step 3: Compile

$ gcc stepperMotor.c -o stepperMotor -lwiringPi

Step 4: Run

 $ sudo ./stepperMotor

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/23_stepperMotor.py)

- 85 -

Step 3: Run

$ sudo python 23_stepperMotor.py

Now you should see that the stepper motor spinning.

- 86 -

Lesson 24 Acceleration Sensor ADXL345

Overview

In this lesson, we will learn how to use an acceleration sensor ADXL345 to get the acceleration data.

Components

- 1* Raspberry Pi

- 1* ADXL345 module

- Several jumper wires

Principle

1. ADXL345

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with high resolution (13-bit)

measurement at up to ±16g. Digital output data is formatted as 16-bit twos complement and is

accessible through either a SPI (3-wire or 4-wire) or I2C digital interface. The ADXL345 is well suited for

mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as

well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables

measurement of inclination changes less than 1.0°.

Low power modes enable intelligent motion-based power management with threshold sensing and

active acceleration measurement at extremely low power dissipation.

2. Key functions

● int wiringPiI2CSetup (int devId)

This initialises the I2C system with your given device identifier. The ID is the I2C number of the device

and you can use the i2cdetect program to find this out. wiringPiI2CSetup() will work out which revision

Raspberry Pi you have and open the appropriate device in /dev.

The return value is the standard Linux filehandle, or -1 if any error – in which case, you can consult errno

as usual.

● int wiringPiI2CRead (int fd)

Simple device read. Some devices present data when you read them without having to do any register

transactions.

● int wiringPiI2CWriteReg8 (int fd, int reg, int data)

● int wiringPiI2CWriteReg16 (int fd, int reg, int data)

These write an 8 or 16-bit data value into the device register indicated.

● int wiringPiI2CReadReg8 (int fd, int reg)

● int wiringPiI2CReadReg16 (int fd, int reg)

- 87 -

These read an 8 or 16-bit value from the device register indicated.

Procedures

Step 1: Build the circuit

Step 2: Like the SPI peripheral, I2C is not turned on by default. You can use raspi-config to enable it.

$ sudo raspi-config

Use the down arrow to select “5 Interfacing Options”

- 88 -

Arrow down to “P5 I2C”

Select “Yes” when it asks you to enable I2C.

- 89 -

Also select “Yes” when it tasks about automatically loading the kernel module.

Use the right arrow to select the “Finish” button.

Select “Yes” when it asks to reboot.

The system will reboot. When it comes back up, log in and enter the following command:

$ ls /dev/*i2c*

The Pi should respond with:

/dev/i2c-1

Which represents the user-mode I2C interface.

- 90 -

For C language users:

Step 3: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/24_ADXL345/adxl345.c)

Step 4: Compile

$ gcc adxl345.c -o adxl345 -lwiringPi

Step 5: Run

 $ sudo ./adxl345

For Python users:

Step 3: Install the required tools and libraries

$ sudo apt-get install build-essential libi2c-dev i2c-tools python-dev libffi-dev

$ sudo apt-get install python-smbus

Step 4: Install ADXL345 library

$ cd /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/24_ADXL345/

$ sudo python setup.py install

Step 5: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/24_ADXL345/examples/)

$ cd examples

Step 6: Run

$ sudo python simpletest.py

Now you should see the acceleration data displayed on the terminal.

- 91 -

- 92 -

Lesson 25 PS2 Joystick

Overview

In this lesson, we will learn the usage of joystick. We program the Raspberry Pi to detect the state of the

joystick.

Components

- 1* Raspberry Pi

- 1* ADC0832

- 1* PS2 Joystick

- 1* Breadboard

- Several jumper wires

Principle

A joystick is an input device consisting of a stick that pivots on a base and reports its angle or direction

to the device it is controlling. A joystick, also known as the control column, is the principal control device

in the cockpit of many civilian and military aircraft, either as a center stick or side-stick. It often has

supplementary switches to control various aspects of the aircraft's flight.

Joysticks are often used to control video games, and usually have one or more push-buttons whose state

can also be read by the computer. A popular variation of the joystick used on modern video game

consoles is the analog stick. Joysticks are also used for controlling machines such as cranes, trucks,

underwater unmanned vehicles, wheelchairs, surveillance cameras, and zero turning radius lawn mowers.

Miniature finger-operated joysticks have been adopted as input devices for smaller electronic equipment

such as mobile phones.

Procedures

Step 1: Build the circuit

- 93 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/25_ps2Joystick/joystick.c)

Step 3: Compile

$ gcc joystick.c -o joystick -lwiringPi

Step 4: Run

 $ sudo ./joystick

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/25_joystick.py)

Step 3: Run

$ sudo python 25_joystick.py

Now you should see the joystick state information displayed on the terminal.

- 94 -

- 95 -

Lesson 26 A Simple Access Control System

Overview

In this lesson, we will learn how to make a simple access control system based on the Raspberry Pi and

the RC522-based RFID module.

Components

- 1* Raspberry Pi

- 1* RFID module

- 1* RFID ID Card

- 1* Special-shaped RFID ID Card

- 1* Active buzzer

- 1* LED

- 1* 220Ω Resistor

- 1* 1KΩ Resistor

- 1* NPN Transistor (S8050)

- 1* Breadboard

- Several jumper wires

Principle

It is a comprehensive experiment which contains many devices. For more information about RFID and

RC522, please refer to lesson 19 in this kit.

In this experiment, we program the Raspberry Pi to read the RFID ID card through the RC522 RFID

module. If you get the same ID number as previously input, the LED will light up. In addition, when the

RFID ID card approaches the reader, the buzzer will make sounds.

Procedures

Step 1: Build the circuit

- 96 -

For C language users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_C_Code_for_RPi/26_AccessCtrlSystem)

Step 3: Compile

$ sudo ./compile.sh

Step 4: Run

 $ sudo ./test

For Python users:

Step 2: Edit and save the code with vim or nano.

(Code path: /home/Adeept_RFID_Learning_Kit_Python_Code_for_RPi/26_AccessCtrlSystem/MFRC522-python/Read_test.py)

Step 3: Run

$ sudo python Read_test.py

Now put the RFID ID card close to the reader and the buzzer will beep. At the same time, the LED lights

up.

- 97 -

- 98 -

