

Resources Link

RobotName: AdeeptRaspTankPro

RobotURL: https://github.com/adeept/adeept_rasptankpro

RobotGit: https://github.com/adeept/adeept_rasptankpro.git

[Official Raspberry Pi website] https://www.raspberrypi.org/downloads/

[Official website] https://www.adeept.com/

[GitHub] https://github.com/adeept/adeept_rasptankpro/

[Image file and Documentation for structure

assembly] https://www.adeept.com/learn/detail-49.html

https://github.com/adeept/adeept_rasptank
https://github.com/adeept/adeept_rasptank.git
https://www.raspberrypi.org/downloads
https://www.adeept.com
https://github.com/adeept/adeept_rasptank
https://www.adeept.com/learn/detail-49.html

1

Content
Resources Link.. 1

Premise.. 3

Introduction of RaspTank Pro Products.. 4

1. Raspberry Pi...6

1.2 Introduction of Robot HAT Driver Board...16

2. Installing and Configuring Raspberry Pi System..20

3. Running the Program and WEB Control Interface..58

4. Setting the Program to Run Automatically After Startup... 68

5.How to Edit the Code Program in Raspberry Pi...71

6. Controlling WS2812 LED to Change Color... 75

7. Controlling the Servo.. 81

8. Controlling Motor to Rotate..87

9. Reading the Data of the Ultrasonic Ranging Module... 92

10.RaspTank Pro Assembly Tutorial and Precautions..98

11.Controlling RaspTank Pro for Infrared Line Tracking.. 158

12. Using Multithreading to Make Police Lights and Breathing Lights.........................165

13. Controlling RaspTank Pro to Automatically Avoid Obstacles.................................173

15. OpenCV Function... 182

16. GUI Control Function... 200

2

17. How to Use OpenCV to Open Real-time Video Screen... 209

18. How to Use OpenV to Process Video Frames.. 213

19. How to Turn on the UART of Raspberry Pi... 216

20. How to Display Information on the OLED Screen...220

21.How to Control RaspTank Pro 140 via Mobile APP... 223

22. How to Turn on the Raspberry Pi Hotspot..226

Common Problems and Solutions (Q&A).. 227

3

Premise

1.STEAM and Raspberry Pi
STEAM stands for Science, Technology, Engineering, Arts and Mathematics. It's a type of trans

disciplinary education idea focused on practice. As a board designed for computer programming

education, Raspberry Pi has lots of advantages over other robot development boards. Therefore,

Raspberry Pi is used for function control of the robot.

2.About the Documentation
This documentation is for software installation and operation guide for the Python robot product.

It describes every detail of the whole process of fulfilling the robot project by Python and Raspberry

Pi from scratch as well as some precautions. Hope you can get started with the Raspberry Pi robot on

Python and make more creations with this documentation.

4

Introduction of RaspTank Pro Products

1. About RaspTank Pro products
RaspTank Pro is an open source intelligent robot product for artificial intelligence

and robot enthusiasts and students. It is also an open Raspberry Pi-based robot

development platform. It has the following features:

Easy to assemble: adopting structural modular design, open hardware list and

detailed assembly tutorial.

Easy to learn: Complete and detailed development learning tutorials and sample

codes are provided from algorithms to applications.

Rich functions: automatic obstacle avoidance, color recognition, color tracking,

moving object detection, Web remote control, OLED display.

Aluminum alloy structure: strong and durable.

Extensible: the structure can be expanded and DIY.

Web remote control: Regardless of mobile phone, tablet, computer, Windows, Linux,

Mac OS, as long as you can install Google Chrome browser to control the robot.

Support multiple versions of Raspberry Pi: support Raspberry Pi 3B, Raspberry Pi

3B+ and Raspberry Pi 4.

Supporting Python.

RaspTank Pro has the functions of grabbing objects and visual line tracking, color

recognition, moving object detection, Web remote control, OLED display, etc.;

RaspTank Pro uses a decelerated DC motor as a power unit, which has the advantage of

fast speed; using crawler wheels makes RaspTank Pro has excellent off-road performance

and can be applied to complex terrain; the program only needs to control the high and

low levels of the corresponding GPIO ports to control the car to grab items, which is

5

convenient for novice makers to quickly learn and use the control methods of car

products ；

6

1. Raspberry Pi

1.1 Introduction to Raspberry Pi

1.1.1 Raspberry Pi
Raspberry Pi (Raspberry Pi, RasPi/RPi) is developed by the British charity

organization "Raspberry Pi Foundation", based on ARM microcomputer motherboard,

only the size of a credit card, but has the basic functions of a personal computer. The

original purpose of the Foundation’s development of the Raspberry Pi was to improve the

teaching level of the school’s computer science and related disciplines, and cultivate the

youth’s computer programming interest and ability. Nowadays, most people use the

Raspberry Pi for embedded development, which is mostly used in the Internet of Things,

smart home and artificial intelligence.

1.1.2 Raspberry Pi motherboard
In our lessons, we will use the Raspberry Pi 4 motherboard. Let's take a look at the

structure of the Raspberry Pi 4 motherboard. As shown in the following figure:

7

The following contents will briefly explain the main structure ports of the

Raspberry Pi 4 motherboard:

(1) GPIO 40-PIN pin:

The General Purpose Input Output (GPIO) is designed as a slot with two rows of pins

on the Raspberry Pi motherboard. GPIO can be used to connect various peripheral

electronic devices and sensors to control or monitor these devices through input/output

level signals. For example, you can use GPIO to control the speed of a DC motor, or read

the measured distance of an ultrasonic sensor. These functional characteristics of GPIO

make the Raspberry Pi different from ordinary computer motherboards because it gives

developers the freedom to operate manually. We will further introduce GPIO in the

subsequent chapters and use them extensively.

(2) Gigabit Ethernet port:

The Ethernet interface allows the Raspberry Pi to connect to the computer network in

a wired manner, which allows us to easily access the Internet or log in to the Raspberry Pi

remotely. The Raspberry Pi's Ethernet interface is implemented using a USB bus, and

data is transferred through the USB bus. Most models of Raspberry Pi provide an

Ethernet interface

(3) Micro HDMI port:

High-definition multimedia interface (High Definition Multimedia Interface, HDMI)

is a fully digital video and sound transmission interface, used to transmit uncompressed

audio and video signals. By connecting it to a display (or TV) equipped with an HDMI

interface, the content of the Raspberry Pi can be displayed. The HDMI interface can

transmit video and audio signals at the same time, so when we use it, we don't need to

connect speakers to the audio interface of the Raspberry Pi. If we really need to play

sound through the audio interface, we need to modify the operating system configuration

accordingly.

8

(4) USB2.0/3.0 port:

The Universal Serial Bus (USB) interface is the most common interface on a

computer. You can use it to connect devices such as keyboards, mice, USB flash drives,

and wireless network cards. When the number of USB ports is not enough, we can also

increase the number of USB ports through a USB hub.

(5) Audio port:

Audio interface (3.5mm headphone jack) When HDMI connection is not used, you

can use the standard 3.5mm headphone jack speakers or headphones to play audio. At the

same time, the interface also integrates a composite video interface with a composite

audio and video output function, which is generally used to connect to old models of TVs,

and is currently rarely used.

(6) MIPI CSI camera port:

The CSI interface can be used to connect the CSI camera to the Raspberry Pi via a

ribbon cable for easy video recording and image capture. Compared with the USB

camera, this camera module has better performance.

(7) USB-C 5V/3A power supply port:

The Micro USB power supply interface is one of the main power supply methods of

the Raspberry Pi. The rated voltage is 5V. The standard current requirements of different

versions of the Raspberry Pi are slightly different. For example: the 1B type only needs

700mA, and the 3B+ type requires 2.5A. The chargers of many Android mobile phones

can provide the necessary voltage and current for the Raspberry Pi. The current demand

of the Raspberry Pi is also related to the connected external device. It is recommended

that it should be calculated in advance when using it. Choose a suitable current (power)

power supply for the Raspberry Pi. When the external device has a large power, an

independent power supply should be used Power supply for external devices.

(8) Micro SD card slot:

9

The SD card slot is located on the back of the Raspberry Pi motherboard. The

SD/MicroSD card is an essential storage part of the Raspberry Pi. It is used to install the

operating system and store data. The capacity of the SD card should be above 2GB. In

order to have a better experience, it is recommended to equip your Raspberry Pi with a

large-capacity (above 16G) high-speed (Class10 or above) SD card.

(9) Bluetooth port:

The Bluetooth function allows the Raspberry Pi to connect with Bluetooth-enabled

devices (such as a mouse, keyboard, and handle).

(10) PoE HAT port:

Active Ethernet (Power Over Ethernet, PoE) refers to a technology that uses

Ethernet for power transmission. On the basis of the original Micro USB and GPIO

power supply, the Raspberry Pi 3B+ type adds a new power supply method over Ethernet.

Users can use the network cable to supply power to the Raspberry Pi without the need to

configure an additional power supply, which is convenient for certain application

scenarios.

(11) MIPI DSI display port:

You can connect the LCD display to the Raspberry Pi, which is generally used for

embedded product development. Under normal circumstances, the HDMI interface can

already meet the demand.

1.1.3Operating system
The Raspberry Pi supports a variety of operating systems, mainly based on Liunx

and Windows, and most of them can be found on the official website of the Raspberry Pi

Foundation (www.raspberrypi.org). The following briefly introduces two representative

operating systems.

(1) Raspbian

10

Raspbian is the official operating system of the Raspberry Pi Foundation. It is

customized based on Debian GNU/Linux and can run on all versions of the Raspberry Pi

motherboard. According to the experience, Raspbian and Raspberry Pi combine the best,

stable operation, powerful, easy to use, can basically meet various application needs, so it

is strongly recommended to use Raspbian as the preferred operating system for Raspberry

Pi. In the following chapters, we will further introduce the use of Raspbian in detail, and

develop various applications on it.

(2) Windows 10 IoT Core

Windows 10 IoT Core is an operating system specifically created by Microsoft for

the Internet of Things ecosystem. Windows 10 IoT Core is the core version of the

Windows 10 IoT operating system. It has relatively simple functions and can run on the

Raspberry Pi of type 2B or above. The installation and use of Windows 10 IoT Core will

not be described in detail here. If you are interested, you can visit Microsoft's website for

more information.

In addition to the two operating systems described above, there are several operating

systems that support the Raspberry Pi, such as Ubuntu MATE, OSMC, LibreELEC,

PiNet, RISC OS, etc. As for which one to choose, it depends on whether you want to use

Raspberry What to do. If you want to use the Raspberry Pi as an ordinary computer or for

electronic project development, then Raspbian is a very good choice. If you plan to use

the Raspberry Pi as a media center, you can consider using OSMC or LibreELEC.

1.1.4 Programming language
For the Raspberry Pi, there are many programming languages available. In fact, any

language that can be compiled for the ARM architecture (such as the C language) can be

used for the Raspberry Pi. The most popular language should be Python. In fact, the Pi in

the name of the Raspberry Pi was inspired by the word Python. Python is an interpretive,

object-oriented, and dynamic data type high-level programming language with powerful

functions, good compatibility, and high reliability. Python programs are easy to write and

11

read. At present, there are two major versions of Python: Python 2 and Python 3. Both

versions have been updated and maintained, but people still have disputes about which

version to use. You can visit Python's official website (www.python.org) to understand

more related content, in the future we will mainly use Python 3 for development

introduction. In addition, because the compatibility of the Raspberry Pi is splendid, the

program we wrote on the 3B+ model can be run on the Zero W model with little

modification.

1.2 Introduction to GPIO

1.2.1What is GPIO
GPIO (General Purpose I/O Ports) are general-purpose input/output ports. In layman's

terms, they are some pins with two rows of pins. They can be used to output high and low

levels or to read the state of the pins-whether it is high or low. Users can interact with the

hardware through the GPIO port (such as UART), control the work of the hardware (such

as LED, buzzer, etc.), read the working status signal of the hardware (such as interrupt

signal), etc.

12

1.2.2 Introduction of GPIO pins
(1) GPIO pin comparison table

13

【Form description】:

(1) Three naming (coding) methods for Raspberry Pi pins

Three ways to name the Raspberry Pi pins:

The WiringPi number is the pin number of the functional wiring (such as TXD,

PWM0, etc.); the BCM number is the Broadcom pin number, also known as GPIO; the

14

physical number is the number corresponding to the physical location of the pin on the

Raspberry Pi motherboard (1 ~40).

(2) 3.3V/5V pin and GND pin

3.3V/5V pin and GND pin are commonly known as power and ground pins. The

power and ground pins allow your Raspberry Pi to power some external components,

such as LED lights. It should be noted that before using these pins to power any external

modules or components, care should be taken. Excessive operating current or peak

voltage may damage the Raspberry Pi. Do not use voltages greater than 5V!

(3) SDA and SCL pins

The SDA and SCL pins constitute the I2C interface. I2C is a simple, bidirectional

two-wire synchronous serial bus developed by Philips. It only requires two wires to

transfer information between devices connected to the bus. The Raspberry Pi can control

multiple sensors and components through the I2C interface. Their communication is done

through SDA (data pin) and SCL (clock speed pin). Each slave device has a unique

address, allowing rapid communication with many devices. The ID_EEPROM pin is also

an I2C protocol, which is used to communicate with HATs.

(4) SCLK, MOSI and MISO pins

SCLK, MOSI and MISO pins form the SPI interface. SPI is a serial peripheral

interface, used to control components with a master-slave relationship, and works in a

slave-in, master-out and master-in-slave manner. The SPI on the Raspberry Pi consists of

SCLK, MOSI, and MISO interfaces, and SCLK is used for controlling data speed, MOSI

sends data from the Raspberry Pi to the connected device, while MISO does the opposite.

(5) TXD and RXD pins

TXD and RXD form a UART interface. TXD is a pin to send data, and RXD is a pin

to receive data. A friend who uses Arduino must have heard of UART or Serial. The

Universal Asynchronous Receiver/Transmitter interface is used to connect the Arduino to

15

the computer for which it is programmed. It is also used for communication between

other devices and the RX and TX pins. If the Raspberry Pi has a serial terminal enabled

in raspi-config, you can use these pins to control the Raspberry Pi through a computer or

directly to control the Arduino.

16

1.2 Introduction of Robot HAT Driver Board

1.2.1Introduction of Robot HAT driver board
When you get the robot product, you will see a board with its name printed on it

called: Adeept Robot HAT, which is an important part of robot. There are many

interfaces on the Robot HAT driver board. By these interfaces, you can connect some

sensors and electronic hardware modules, so that you can achieve many extended

functions. Our robot products need to be used in conjunction with the Raspberry Pi. Let's

first get to know the Robot HAT driver board.

【Vin】： The vin interface is an interface for external power supply.

【Switch】：Switch is the switch of Robot HAT driver board, ON is to open, and OFF

is to close.

【Micro USB】：The Micro USB interface can connect the Robot HAT driver board to

a computer or other equipment, and can also supply power for the Robot HAT driver

board.

17

【Power LED】 Power LED is used to indicate the power status of Robot HAT driver

board. If the LED is on, it means that the Robot HAT driver board is powered on and can

run; if the LED is off, it means that the Robot HAT driver board is not powered on.

【Tracking】 is the pin interface of Tracking Module.

【WS2812】 is the pin interface of WS2812 Module.

【3.3V-GND】 3.3V power supply interface.

【Uart】 Uart interface.

【GPIO 40-PIN】 General Purpose Input Output (GPIO) is designed as a slot with two

rows of pins on the Robot HAT driver board. GPIO can be used to connect various

peripheral electronic devices and sensors and control or monitor these devices with

input/output level signals. In robot products, this GPIO interface is connected to the

GPIO pins on the Raspberry Pi driver board.

【5V-GND】 5V power supply interface.

【IIC】IIC interface. It is also the interface of the OLED screen module.

【MPU6050】The interface of MPU6050 sensor.

【Port】is divided into Port1, Port2, and Port3 interfaces, which are commonly used to

connect Small LED light.

【Servo port】Servo interface.

【motor】 is divided into motor1, motor2 interfaces.

【Ultrasonic】Ultrasonic interface.

18

1.2.2 Precautions for the use of Robot HAT driver board
When you are performing software installation, structural assembly or program

debugging, you can use a USB cable to power the Raspberry Pi. If the Raspberry Pi is

equipped with Robot HAT, you can connect the USB cable to the USB port on the Robot

HAT. Robot HAT will power the Raspberry Pi by the GPIO interface.

Different Raspberry Pi have different current requirements. For example, the

Raspberry Pi 3B needs at least 2A to boot up, and the Raspberry Pi 4 needs 3A to boot

normally. When you use the power adapter to power the Raspberry Pi, you can check the

specifications on your power adapter.

When the Robot HAT is connected to a load, such as a motor or multiple servos, you

need to use a high-current power supply to connect to the Vin on the Robot HAT. You

can use two 18650 batteries that support high-current to power the Robot HAT. For

power supply, our product will provide a dual 18650 battery box with a 2pin interface.

You can directly connect it to the Robot HAT.

When the USB interface on the Robot HAT is used for power supply, the switch of

the Robot HAT does not control whether to supply power. The switch of the Robot HAT

can only control the power supply of Vin.

Do not use the USB port on the Robot HAT and Vin to supply power at the same

time. If you need to debug the program for a long time and don’t want to remove the

battery, you can set the switch on the Robot HAT to OFF, so that when the USB cable is

used to connect the Robot HAT, the Robot HAT is powered by USB.

If your robot restarts automatically after it is turned on, or after it is turned on

normally, it is disconnected and restarted at the moment when the robot starts to move, it

is likely that your power supply does not output enough current. The robot will

automatically restart when it is turned on. Run the program to place all the servos in the

neutral position. The voltage drop generated during this process causes the Raspberry Pi

to restart.

19

We have tested that the peak current of the robot is around 3.75A when powered by

7.4V, so you need to use a battery that supports 4A output.

You can also use the power lithium battery to power the Robot HAT. Robot HAT

supports power supply below 15V.

When assembling and installing the servo rocker arm, you can use a USB cable to

power the Robot HAT. After the Raspberry Pi with the robot software is installed, it will

control the Robot HAT to set all the servo ports to output neutral signals. You can

connect the servo to any port. The gear of the servo will rotate to the neutral position, and

then you can install the servo rocker arm according to the specified angle. After the

rocker arm is installed, you can disconnect the servo from the Robot HAT , When you

need to install the rocker arm of the second servo, connect the second servo to any servo

port on the drive board.

20

2. Installing and Configuring Raspberry Pi System

2.1 Downloading the installation software for the Raspberry Pi

system

Raspberry Pi Imager is an image writing tool to SD card developed by the Raspberry Pi

Organization. It comes with many versions working on different systems and it's quite easy to use

Step-by-Step Overview

1. Prepare an SD card (16G or larger) and an SD card reader

2. Download the `Raspberry Pi Imager` on the official website

- [Raspberry Pi Imager for Windows]

- [Raspberry Pi Imager for macOS]

- [Raspberry Pi Imager for Ubuntu]

3. After the download is complete, install the software and burn the Raspberry

Pi system. Now take Windows as an example.

1. Open the file "imager.exe" after the download is complete, and click "Install".

https://www.raspberrypi.org/downloads
https://downloads.raspberrypi.org/imager/imager.exe
https://downloads.raspberrypi.org/imager/imager.dmg
https://downloads.raspberrypi.org/imager/imager_amd64.deb

21

2. Then click "Finish".

22

3. The software interface after opening is as follows:

23

2.2 Downloading the Raspberry Pi system Raspbian
Raspbian is the official operating system of the Raspberry Pi Foundation. It is

customized based on Debian GNU/Linux and can run on all versions of the Raspberry Pi

motherboard. According to the experience, Raspbian combines Raspberry Pi the best. It

is stable, powerful, and easy to use. It can basically meet the needs of various

applications. This course uses Raspbian as the preferred operating system for the

Raspberry Pi. Next, we will teach you how to download the Raspberry Pi system

Raspbian. Now there are two ways to download Raspbian for Raspberry Pi system (we

recommend method one first)

2.2.1 Method one :

(1) visit the official website of the Raspberry Pi through a browser to download

Raspbian:

https://www.raspberrypi.org/downloads/

After logging in to the official website, click on the location as shown below:

https://www.raspberrypi.org/downloads/

24

(2) We need to find out the Raspberry Pi OS (32-bit) with desktop and

recommended software. It contains a complete desktop system and recommended

software packages.

25

(3) Choose to download the ".ZIP" file and wait for the download to complete:

26

(4) Find the ".ZIP" file you just downloaded, double-click to open it, and extract it.

The uncompressed file format of the file is ".img". Pay attention, you must name the path

of the uncompressed .img file all English letters without special characters.

•

2.2.2 Method two:Manually downloading the image file we provide and write it to the

SD card (not recommended).

The image downloaded according to 2.1.1and 2.1.2 of method one is the latest

official version of Raspbian and comes with some pre-installed software. At the same

time, the normal operation of the robot product requires many other dependent libraries,

although we provide a script to install these simple methods of relying on libraries (will

be introduced in detail later), occasionally encountering dependent library updates may

cause the installation of dependent libraries to fail, so we provide a Raspbian mirror file

pre-installed with dependent libraries. The disadvantage of this method is that the mirror

27

files and related dependent libraries we provide cannot be kept updated at any time. Only

when you encounter a very difficult problem, you can try this method to solve

it.Download the Raspbian image file address we provide:

https://www.adeept.com/learn/detail-49.html

After the download is complete, decompress it. The path of the decompressed .img

file must be all English letters and no special characters.

2.3 Burning the downloaded Raspberry Pi system to the

SD card
Use Raspberry Pi Imager to burn Raspberry Pi system to SD card.

(1) Click "CHOOSE OS" on the opened Raspberry Pi Imager software interface.

(2) Click "Use custom" and select a custom ".img" file from your computer, which is

the ".img" file of the Raspberry Pi system that we downloaded and decompressed before.

28

(3) Select the ".img" file and click "Open".

(4) Select the ".img" file and click "Open".

29

(5) Then on the interface of Raspberry Pi Imager, the ".img" file of our selected

Raspberry Pi system will appear.

(6) Click "CHOOSE SD".

30

(7) Then select the SD card we need to burn.

(8) Click "WRITE" to write it to the SD card. Wait for the burn to complete.

31

(9) After the burning is completed, the following message will be

prompted,indicating that the burning is finished, click "CONTINUE".

【Pay Attention】

Don't remove the SD card after burning! After the Raspberry Pi Imager is burned,

the memory card will be ejected in the program. This will cause the subsequent copy

32

operation to prompt that the SD card has not been found. You can unplug the card reader

from the computer and then plug it into the computer again.It is necessary to configure

SSH and WIFI connection later. At this time, once the SD card is put into the Raspberry

Pi to boot, it may cause subsequent headless WIFI configuration failure.

2.4 Starting the Raspberry Pi SSH service
By SSH (Secure Shell) server, you can use the command line of Raspberry Pi remotely on

another device. In the subsequent operation and when using the Raspberry Pi, you don't have to

connect a mouse, keyboard, or monitor to it, but simply control it on a computer in the same LAN.

As of the November 2016 release, Raspbian has the SSH server disabled by default. You will

have to enable it manually.

The method to enable the SSH in this documentation can be referred to the Raspberry Pi official

website SSH(Secure Shell)

2.4.1 Method A: Enable SSH with peripherals
If you manually download the image file we provide and write it to the SD card to write the

operating system of the Raspberry Pi to the SD card, you do not need to refer to this section to open

SSH, because The SSH service in the image is already enabled.

If you've connected a mouse, keyboard, or monitor to the Raspberry Pi, follow these steps to

enable SSH.

1.Remove the SD card from the computer, insert it to the Raspberry Pi, connect a mouse,

keyboard, and monitor to the Raspberry Pi, boot it up.

2.Go to Preferences menu, select Raspberry Pi Configuration.

https://www.raspberrypi.org/documentation/remote-access/ssh

33

3. Enter the Interfaces tab.

34

4. Select Enable next to SSH.

35

5.Click OK.

2.4.2 Method B: Enable SSH without peripherals

If you use (2.1.3 to manually download the image file we provide and write it to the SD card)

to write the operating system of the Raspberry Pi to the SD card, you do not need to refer to this

section to open SSH, because The SSH service in the image is already enabled.

If you haven't connected any monitor to the Raspberry Pi, follow these steps to

enable SSH.

1. Do not remove the SD card after `Raspberry Pi Imager` writes the image file.

2. Create a file named `ssh` under any directory, without any extension name.

You may create a `ssh.txt` and delete the `.txt` (make sure under Folder Options the box

36

of Hide extensions for known file types is unchecked. Then you have an `ssh` file without

extension name.

3. Copy the `ssh` file and paste to the root directory of the SD card. The

Raspberry Pi will auto search for the `ssh` file when booting, and enable SSH if the file is

found. You only need to copy for one time because the Raspberry Pi then will

automatically enable SSH at every boot.

4. Do not remove the SD card if you need to configure WiFi.

2.5 Configure WiFi on Raspberry Pi

There are many ways to connect WiFi for Raspberry Pi. Two methods are provided

in this documentation; you may visit the official Raspberry Pi website for more:

[Wireless connectivity]

2.5.1 Method A: WiFi connection with peripherals
If you've connected a mouse, keyboard, or monitor to the Raspberry Pi, follow these

steps to configure WiFi.

1.Remove the SD card from the computer, insert it to the Raspberry Pi, connect

a mouse, keyboard, and monitor to the Raspberry Pi, boot it up.

2. Select the WiFi icon at the top right corner on the monitor, find the WiFi to

connect and select.

3. Type in the password for the WiFi, connect.

4. After it's connected successfully, the WiFi will be saved and the Raspberry

Pi will auto connect for next boot, so you don't need to connect peripherals every time.

2.5.2 Method A: WiFi connection without peripherals
If you haven't connected any monitor to the Raspberry Pi, follow these steps to

configure WiFi.

https://www.raspberrypi.org/documentation/configuration/wireless/README.md

37

This method is based on the [official documentation]

1. Do not remove the SD card after `Raspberry Pi Imager` has written the image

file. (This method works for the situation that the Raspbian image file has just been

written to the SD card; if you've already plugged the SD card into the Raspberry Pi and

got it rebooted after the image file being written, the configuration may fail.)

2. Create a file named `wpa_supplicant.conf` anywhere in your computer.

3. Open the file `wpa_supplicant.conf` created with Textbook, enter the

following code:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

country=Insert country code here

network={

ssid="Name of your WiFi"

psk="Password for your WiFi"

}

4. Type in your own information for `Insert country code here`, `Name of your

WiFi`, and `Password for your WiFi`. Pay attention to the capitalization. Refer to the

example below:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

country=US

network={

ssid="MyName"

psk="12345678"

}

https://www.raspberrypi.org/documentation/configuration/wireless/headless.md

38

1. Save and exit. Copy the `wpa_supplicant.conf` to the root directory of the SD

card.

2. If you've alreay copied the file `ssh` to the SD card as instructed in **2.4**,

then both the WiFi and SSH settings without peripherals are done. You may remove the

SD card, insert it into the Raspberry Pi, and boot it up.

7. For more about the file `wpa_supplicant.conf`, refer to the official documentation

[WIRELESS-CLI]

https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

39

2.6 Remotely logging in to the Raspberry Pi system
Before using SSH to connect to the Raspberry Pi, you need to know the IP address

of the Raspberry Pi and the software that supports SSH.

The remote login to the Raspberry Pi is realized through the SSH protocol, and the

Raspberry Pi can be remotely logged in through the software with the SSH protocol. For

example: putty, MobaXterm, etc.

Windows 10, LInux and Mac OS come with SSH function, and you can also log in

to the Raspberry Pi remotely through the terminal.

2.6.1 Obtaining the IP address of the Raspberry Pi

2.6.1.1 Obtaining an IP address with an external display

We provide a simple and fast way to get the Raspberry Pi IP address. You need to

prepare the following components:

(1) One Type-C data cable: used to supply power to the Raspberry Pi.

(2) One HDMI cable: used to connect the monitor.

(3) One mouse: used to operate.

(4) One monitor

(5) One Raspberry Pi

40

Connect the HDMI cable to the HDMI port of the monitor:

41

1.Turn on the monitor switch, and connect the mouse to the USB port of the

Raspberry Pi, supply power to the Raspberry Pi with the Type-C data cable, then the

Raspberry Pi starts. After entering the system interface, we move the mouse cursor to the

" " in the upper right corner, then it will display the IP

address of the Raspberry Pi: 192.168.3.157 (the IP address of each Raspberry Pi is

different). It is necessary for you to record this IP address for it is needed to log in to the

Raspberry Pi system later.

42

2. You can also check the following IP address by opening the command window of

the Raspberry Pi and entering the following command, you need to write it down:

hostname -I

2.6.1.2 Obtaining an IP address with a mobile phone

1. You need to download an APP called "Fing" on your phone, as shown below:

2. After the download is complete, your phone and Raspberry Pi need to be in the

same local area network, that is, your phone and Raspberry Pi are connected to the same

WIFI, then open "Fing" and click "Scan for devices":

43

Click“CONTINUE WITHOUT PERMISSION”：

44

0

Click OK：

45

3. Wait for the scan to complete. In the list, you find a device named "Raspberry Pi".

In the lower left corner, you will see the IP address of the Raspberry Pi: 192.168.3.157.

You need to write down this IP address.

2.6.2 Remotely logging in to the Raspberry Pi system
This course recommends two kinds of software for SSH login to Raspberry Pi. In

actual use, you only need to download one. LInux or Mac OS comes with SSH function,

you can log in to the Raspberry Pi remotely with the terminal without downloading

software.

2.6.2.1 Putty

You need to download and install PuTTY corresponding to your computer system

version, and use it to log in to the Raspberry Pi. PuTTY download address:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Run PuTTY, enter the IP address of the Raspberry Pi into the Host Name, and click

Open.

46

• If it prompts Network error: Connection timed out, it means you probably entered the

wrong IP address.

• When the connection is normal, you will see a security warning. You can safely ignore

it and click the "Yes" button. You will see this warning when PuTTY connects to a

Raspberry Pi that has not been connected before.

• You will now see the usual login prompt. Log in with the same username and password

as the Pi itself. The default login name of Raspbian is pi and the password is raspberry.

When entering the password, the screen will not display the entered password. After

entering raspberry, press Enter to confirm.

47

• You should now have the Raspberry Pi prompt, which will be the same as the prompt

on the Raspberry Pi itself.

2.6.2.2 MobaXterm

MobaXterm is a terminal tool software that can be used to remotely control the

Raspberry Pi.

(1) Log in to the official website with a browser to download:

https://mobaxterm.mobatek.net/download.html. Choose the Free version to download.

48

(2) Download the Portable edition of MobaXterm Home Edition (current version):

(3) Find the downloaded file MobaXterm_Portable_v20.2.zip, double-click to open

it, unzip it to get a new file.

49

(4) Open the unzipped folder, there is a file MobaXterm_Personal_20.2.exe inside.

(5) Double-click to open MobaXterm_Personal_20.2.exe, and then directly open the

MobaXterm software. The interface is as follows:

(6) Click "Session" in the upper left corner.

50

(7) Click "SSH".

(8) Enter the IP address of the Raspberry Pi queried before: 192.168.3.157, and click

"OK" to confirm.

51

(9) Enter the Raspberry Pi default account: pi, then press the Enter key, and then

enter the Raspberry Pi default password: raspberry. Press Enter to log in to the Raspberry

Pi system.

(10) After successfully logging in to the Raspberry Pi system, the following

interface will appear:

52

(11) The red box in the figure below is the command window, where you can

control the Raspberry Pi by entering commands.

(12) When we close the MobaXterm software and open MobaXterm again to

connect to the Raspberry Pi, we can double-click the IP address under "User sessions" on

the left: 192.168.3.157, enter the account name: pi, and you can directly connect to the

Raspberry Pi.

53

2.6.2.3 Windows10, LInux and Mac OS comes with SSH function

Steps to connect to Raspberry Pi via SSH:

1. Open a console terminal window.

2. The initial user name of the Raspberry Pi is pi and the initial password is raspberry.

3. Enter ssh pi@<IP> in the command line and replace <IP> with your Raspberry Pi IP

address, as shown in the following example:

ssh pi@192.168.3.157

4. Press Enter, and the prompt Are you sure you want to continue connecting (yes/no)?

5. Enter yes, press Enter, pi@192.168.3.157's password: appears, fill in the initial

password raspberry of the Raspberry Pi, pay attention to the case, there will be no

changes on the screen during the password input, but it does not Indicates that the input

was not successful, press enter after the input is complete.

6. Now you have logged in to the Raspberry Pi.

54

2.7 Downloading the Raspberry Pi robot product program
• For the power supply of Raspberry Pi, please refer to this official document Power

supply.

• Our Raspberry Pi robot driver board Robot HAT can directly supply power to the

Raspberry Pi through the GPIO pins. However, because the software installation time in

the Raspberry Pi is relatively long, it is not recommended to use battery power when

installing the Raspberry Pi. The Raspberry Pi robot driver board Robot HAT or camera

need not be installed when installing the software in the Raspberry Pi. This does not

affect the software installation, but when you run the installed program, you must connect

the driver board and the Raspberry Pi camera, otherwise Will cause the program to report

an error.

• If you manually download the image file provided by us, you only need to load the

SD card into the Raspberry Pi to boot, and the program of the robot product will run

automatically. You can skip content 2.7.

2.7.1 Downloading the Raspberry Pi robot product program
• All the code of our product has been open sourced on GitHub, you need to

download it to the Raspberry Pi and install the relevant dependencies before it can run

normally. github address: https://github.com/adeept/adeept_rasptankpro

1. After the operations in the previous section, we have logged in to the Raspberry

Pi, and enter the following commands in the console:

sudo git clone https://github.com/adeept/adeept_rasptankpro.git

2. After the input is complete, press enter to start downloading the robot program

from GitHub. This process will continue for a period of time. Wait patiently for the

download to complete.

55

3. After the download is complete, a new folder, adept_rasptankpro, will appear, in

which the product code is stored. Check through the Linux command "ls".

56

2.7.2 Installing the dependency library of the robot program
• If you used 2.2.1 to manually download the Raspbian image file and write it to the

SD card to write the image file to the SD card, you can refer to this section to install the

dependent libraries.

•We have prepared a script to install all the dependent libraries that need to be used

and set up operations such as turning on the camera and automatically running on startup.

•Enter the following code in the console and run the script setup.py to install the

required dependent libraries.

sudo python3 adeept_rasptankpro/setup.py

• Press enter, the next operation is automatically completed by the script program,

this process may last for tens of minutes or several hours depending on the network

environment, just wait patiently.

• After the installation is complete, the console will display text:

The program in Raspberry Pi has been installed, disconnected and restarted.

You can now power off the Raspberry Pi to install the camera and driver board

(Robot HAT). After turning on again, the Raspberry Pi will automatically run the

program to set the servos port signal to turn the servos to the middle position, which

is convenient for mechanical assembly.

57

•After the installation is complete, the Raspberry Pi will automatically disconnect

the SSH connection and restart. At this time, if you are using a Raspberry Pi connected

by software such as Putty, there will be an error message such as Network error: Software

caused connection abort, which is normal, just close it.

58

3. Running the Program and WEB Control Interface
●The WEB app is developed for common users to control the robot in an easier way.

It's convenient to use WEB app; you may use it to wirelessly control the robot on any

device with a web browser (Google Chrome was used for testing).

●Generally Raspberry Pi will auto run `webServer.py` when booting and establish a

web server in the LAN. You may then use any other computer, mobile or tablet in the

same LAN to visit the web page and control the robot.

●How to tell whether the robot has run the `webServer.py` or not: If the WS2812-

LED lights up with the breathing effect, it means the robot has booted and runs the

program automatically.

●If the program is not run when the robot is booted, try to connect Raspberry Pi via

SSH, manually run `webServer.py` with code and check the errors. Refer to the Q&A

below or email us for help (before manually running `webServer.py`, you need to end the

program possibly auto run in the back end to release resources.

sudo killall python3

●Use the following command to run webServer.py

sudo python3 adeept_rasptankpro/server/webServer.py

3.1 Running the Raspberry Pi robot program
Only by successfully running the webServer.py program on the Raspberry Pi, can

you access the Raspberry Pi via IP on the browser (after installing the dependent libraries,

the Raspberry Pi will automatically run webServer.py).

59

Prepare the components required for installation, and turn off the power of the

Raspberry Pi during installation.

Install the camera cable, contact the metal surface of the cable with the metal surface

of the Raspberry Pi (the same is true for installing the camera).

Install Robot HAT and camera, and connect the Raspberry Pi power supply.

60

After the Raspberry Pi is turned on (about 30-50s), you can access the Raspberry Pi

through a browser.

3.2 Introduction to web control interface functions
1. Make sure your device is in the same local area network as the Raspberry Pi.

2. Obtain the IP address of the Raspberry Pi (refer to the software installation section).

3. Open the browser on the device (chrome browser is recommended to avoid possible

browser compatibility issues), enter the IP address of your Raspberry Pi in the address

bar, and visit port 5000, for example: 192.168.3.44 :5000

The web controller will then be loaded into the browser.

61

Depending on the product, the modules on the web controller are also different.

Below is a list of most of the modules and their usage. You can compare the modules

displayed in your browser to understand their functions and usage.

3.2.1 Basic module
Basic modules can be found in almost all products. These modules are used to

control the core functions of robot products. At this time, only the camera can work, and

other functions can only be realized after RaspTankPro is installed.

1. Vedio module

Show the screen captured by the camera. Depending on the product type, the window

rendering method may be different, and some products can also interact with this window.

62

2. Hard wave module

Display the hardware information of the robot product.

CPU Temp: Display the Raspberry Pi CPU temperature;

CPU Usage: Display the CPU occupancy rate of the Raspberry Pi;

63

RAM Usage: Display the RAM usage of Raspberry Pi

3. Move Control Module

Control the movement of the robot product back and forth.

speed: Use the slider to control the speed when the robot moves.

4. Arm Control Module

Control PTZ and robotic arm. Depending on the product, the number of buttons and

manipulation methods are also different.

UP: The camera angle of view moves upward

DOWN: the camera angle of view moves downward

GRAB: clamping chuck

64

LOOSE: Loosen the chuck

LEFT: The robotic arm wants to turn left

RIGHT: The robotic arm turns to the right

HANDDOWN: The robotic arm rotates downward

HANDUP: The robotic arm rotates upward

3.2.2 Advanced Function Module
Advanced function modules refer to those modules used to perform advanced

functions of robotic products. Function button group. Used to switch the function of the

robot.

1. Actions Module

MOTION GET: switch watchdog mode. In this mode, the robot product stops moving

and reacts to the moving objects detected in the camera. The moving objects are framed

in the video of the Vedio module.

65

AUTO MATIC: Switch automatic obstacle avoidance mode. In this mode, the robot

product will automatically advance and use the ultrasonic module to detect obstacles.

When encountering obstacles, try to find other ways.

POLICE LIGHT: switch the police light mode. In this mode, the LED lights of the robot

product will flash like a warning light.

STEADY CAMERA: Switch camera stabilization mode. In this mode, the robot product

will try to maintain the vertical stability of the camera.

TRACK LINE: switch hunting mode. In this mode, the robot product will try to move

along the white lines on the black ground.

2. FC Control Module

Control the switch of the color tracking function and the setting of the color to be

tracked.

COLROR: Select the color to be traced.

START: Switch color tracking mode.

3. CVFL Control Module

The switch that controls the visual patrol function.

66

L1, L2: The two parameters of L1 and L2 are used to set the height of the two

auxiliary lines. Robot products will only recognize the lines in the screen surrounded by

two auxiliary lines.

SP: Deflection tolerance. The larger the value set, the more the robot tends to go

straight.

COLOR: Switch to search for white lines on black or black lines on white.

START: Switch the visual tracking function.

4. PWM INIT SET module

It is used to fine-tune the default angle of the servo, which can correct the angle
error generated when the servo is installed. When returning to the center, the rudder will
return to this default angle.

①Enter the number of the PWM port connected to the servo you want to fine-tune in the
PWM input box

②Click these two buttons to make the servo rotate slightly clockwise or
counterclockwise

③Click this button to save the current servo angle as the default angle

67

④ Click this button to initialize the default angle of all servos to factory settings

5. Home Module

HOME: Return all servos to their initial positions.

6. Radar Scan Control Module

Used to perform the ultrasound scan function and display the scan results.

RaspTankPro does not have this function.

7. Ports Control Module

68

Control the switch of Port1, Port2, Port3 on the development board

4. Setting the Program to Run Automatically After Startup
4.1 Set the specified program to run automatically at boot

●This section only introduces the auto-run method used by our products. If you

need more information about the Raspberry Pi auto-run program, you can refer to this

document from itechfythe document Auto-Run.

●If you have used the operation steps of 2.7.2, then the script program has been

configured to automatically run the program at startup. In this chapter, we explain how to

set a program to start automatically at startup from scratch.

●First we use the following code to create a new startup.sh:

sudo touch //home/pi/startup.sh

●Edit startup.sh

sudo nano startup.sh

●Write the following content in startup.sh, where python3 is followed by the

program you want to run automatically. Note that you must use an absolute path here.

Let's take webServer.py as an example.

#!/bin/sh

sudo python3 [RobotName]/server/webServer.py

●After Ctrl + X To exit editing. Press Y Save. Enter Confirm and exit editing.

●Give startup.sh permissions, where *** is the Linux permission code, we do not

recommend the use of permissions such as 777, but for novices 777 can avoid many

account and permissions problems, of course, you can also set it to 700 , So that only the

https://www.itechfy.com
https://www.itechfy.com/tech/auto-run-python-program-on-raspberry-pi-startup

69

owner can read, write and execute startup.sh, you can learn more about Linux

permissions through this article from maketecheasier the article link Understanding File

Permissions.

sudo chmod 777 //home/pi/startup.sh

●Edit rc.local to configure the script to run automatically

sudo nano /etc/rc.local

●Add the following content under fi in the original document, save and exit:

//home/pi/startup.sh start

●Of course, you can also replace the above script file path with other scripts

you want to run automatically.

4.2 Change the program that starts automatically
●After step 5.1, you can already set the program to run automatically at boot. If

you want to change the program to run automatically at boot, just edit startup.sh:

sudo nano //home/pi/startup.sh

●For example, if we want to replace webServer.py with server.py, we only need

to edit the following:

Replace

sudo python3 [RobotName]/server/webServer.py

with

sudo python3 [RobotName]/server/server.py

●Save and exit so that the robot will automatically run server.py instead of

webServer.py the next time the robot is turned on.

https://www.maketecheasier.com
https://www.maketecheasier.com/file-permissions-what-does-chmod-777-means
https://www.maketecheasier.com/file-permissions-what-does-chmod-777-means

70

●server.py is a socket server used when using pythonGUI. We do not recommend

it to novices here, because you need to manually install a lot of dependent libraries in the

computer that controls it to allow the GUI to communicate with it normally. It is

recommended to use the WEB application to control the Raspberry Pi robot.

71

5.How to Edit the Code Program in Raspberry Pi
●To make daily use of the Raspberry Pi more convenient, we usually do not connect

peripherals such as mouse, keyboard, and monitor to the Raspberry Pi. Since our

Raspberry Pi is installed inside the robot, often with peripherals to control the Raspberry

Pi, the efficiency of programming and testing will be seriously affected. Therefore, we

introduce a method of programming in the Raspberry Pi.

●There are many ways to program in the Raspberry Pi. For example, you can use

2.6.2 to log in to the Raspberry Pi without using a third-party tool. You can also create

files in the Raspberry Pi. Almost all operations can use SSH to connect to the Raspberry

Pi in the terminal, but for many people, it will be a disappointing experience when a lot

of codes are written in the terminal. This chapter introduces a method that can facilitate

the transfer of files to the Raspberry Pi. This method can directly edit programs in the

Raspberry Pi.

●This method requires the third-party software MobaXterm,see 2.6.2.2 for

installation tutorial.

●MobaXterm is a terminal tool software that can be used to remotely control the

Raspberry Pi and remote control is available when SSH is on. For Raspberry Pi's method

of enabling SSH and automatically connecting to WIFI, please refer to steps 2.2 and 2.3.

●Download and install MobaXterm.

●To obtain the IP address of the Raspberry Pi, you can refer to the method of 3.x

and log into the Raspberry Pi in this document to obtain the IP address of the

Raspberry Pi.

●To run MobaXterm, firstly, create a new session, click Session in the upper left

corner, click SSH in the pop-up window, fill in the IP address of the Raspberry Pi behind

Remote host, and finally click OK, the default account name of the Raspberry Pi is pi ,

The default password is raspberry. Just the password doesn't appear on the screen when

72

you enter it and the * number doesn't mean nothing Enter successfully, press after login

to log in to the Raspberry Pi, MobaXterm will remind you to save the password.You need

to choose.

●If the user name and password are correct, you can change the user name and

password according to the prompt in the terminal, which is more secure.

●After the success of the login, MobaXterm will automatically save the

conversation, when connected to the raspberry pie again next time only need to double

click on the left side of the IP address can be connected to the Raspberry Pi again, if there

is no save username and password will need to input the user name and password, if the

IP address of the Raspberry Pi changed, you need to start a new dialogue.

●After a successful login, the left column is replaced with a file transfer system,

which allows you to interact with the system inside the Raspberry Pi. If you want to

return to session selection, just click Sessions.

●Programs you write on other devices can be transferred to the Raspberry Pi by

simple drag and drop, and then the Raspberry Pi can be controlled in the terminal to

execute the program, or the files in the raspberry Pi can be dragged to other devices.

●If you want to use another IDE to edit files in Raspberry Pi, you can find the file

you want to edit in the file transfer system on the left side of the MobaXterm. Right-click

73

on this file and select your IDE so you can use your favorite on other devices IDE to edit

the Raspberry Pi file, after editing, press "CTRL+S" to save the file and it will be

automatically synchronized to the Raspberry Pi.

●However, it should be noted that when you use MobaXterm's file transfer system

to edit files in the Raspberry Pi, you need to pay attention to the permissions problem,

because the file transfer system does not have root permissions, so if you are prompted to

save after editing the file The permission denied error causes the file cannot be saved

after editing. You need to use the following command to give the file you want to edit

permission to be edited by MobaXterm:

74

sudo chmod 776 [FileName]

●You can learn more about Linux permissions through maketecheasier article from

the article link

Understanding File Permissions.

https://www.maketecheasier.com
https://www.maketecheasier.com/file-permissions-what-does-chmod-777-means

75

6. Controlling WS2812 LED to Change Color
In this lesson, we will learn how to control WS2812 LED.

6.1 Components needed for this lesson
Components Quantity Picture

Raspberry Pi 1

Robot HAT 1

3 pin wire 1

WS2812 RGB LED 1

6.2 Introduction of WS2812 RGB LED
The WS2812 RGB module is a low-power RGB tri-color lamp integrated with a

current control chip. Its appearance is the same as a 5050LED lamp bead, and each

element is a pixel. The pixel contains an intelligent digital interface data latch signal

shaping and amplifying drive circuit, as well as a high-precision internal oscillator and a

12V high-voltage programmable constant current control part, which effectively ensures

the color of the pixel point light is highly consistent.

76

WS2812 LED light is a very commonly used module on our robot products. There

are three WS2812 lights on each module. Please pay attention to the signal line when

connecting. The signal line needs to be connected to WS2812 after being led out from the

Raspberry Pi. At the "IN" end of the LED light module, when the next WS2812 LED

module needs to be connected, the signal line is drawn from the "OUT" end of the

previous WS2812 module and connected to the "IN" end of the next WS2812 LED.

When using the Raspberry Pi to install the driver board RobotHAT, the WS2812

LED module can be connected to the WS2812 interface on the RobotHAT using a 3pin

cable.

We use a third-party library [rpi_ws281x] to control WS2812 LED lights, you can

learn about it on https://github.com/richardghirst/rpi_ws281x.

If you connect the WS2812 LED module to the WS2812 interface of RobotHAT, the

signal line is equivalent to the GPIO 12 of the Raspberry Pi.

• The documentation has required to install all the dependent libraries needed by the

robot. If you do not install the dependent libraries, you can use the following command to

install rpi_ws281x for the Raspberry Pi. Since the Raspberry Pi has two built-in versions

of Python, we use Python3 here Take the code as an example, so use pip3 to install the

library.

pip3 install rpi-ws281x

77

6.3 Circuit diagram (wiring diagram)
When the WS2812 LED module is in use, the IN port needs to be connected to the

WS2812 port on the RobotHAT driver board, as shown in the figure below:

6.4 How to control WS2812 LED

6.4.1 Running the code
1. Remotely log in to the Raspberry Pi terminal.

2. Enter the command and press Enter to enter the folder where the program is located:

78

cd adeept_rasptankpro/server/

3. View the contents of the current directory file:

ls

4. Enter the command and press Enter to run the program:

sudo python3 LED.py

5. After running the program successfully, you will observe that the WS2812 light turns

red.

6.5 Main code program
After updating the code, the actual code may be different. For the complete code, refer to

the file adept_rasptankpro/server/LED.py

Next, explain the program. This program is written in and executed on the Raspberry Pi.

For the specific method, you can refer to Lesson 5 How to Edit the Code Program of the

Raspberry Pi.

Import dependency

1. import time
2. from rpi_ws281x import *

79

构建 LED控制类

1. class LED:
2. def __init__(self):
3. self.LED_COUNT = 16 # Set to the total number of LED lights on the robot product, which can be

more than the total number of LED lights connected to the Raspberry Pi
4. self.LED_PIN = 12 # Set as the input pin number of the LED lamp group
5. self.LED_FREQ_HZ = 800000
6. self.LED_DMA = 10
7. self.LED_BRIGHTNESS = 255
8. self.LED_INVERT = False
9. self.LED_CHANNEL = 0
10.
11. # Use the configuration items above to create a strip
12. self.strip = Adafruit_NeoPixel(
13. self.LED_COUNT,
14. self.LED_PIN,
15. self.LED_FREQ_HZ,
16. self.LED_DMA,
17. self.LED_INVERT,
18. self.LED_BRIGHTNESS,
19. self.LED_CHANNEL
20.)
21. self.strip.begin()
22.
23. def colorWipe(self, R, G, B): # This function is used to change the color of the LED
24. color = Color(R, G, B)
25. for i in range(self.strip.numPixels()): # Only one LED light color can be set at a time, so a cycle is

required
26. self.strip.setPixelColor(i, color)
27. self.strip.show() # After calling the show method, the color will really change

Instantiate the object and execute the method function. The function colorWipe()

needs to pass in three parameters, which are R, G, and B, corresponding to the

brightness of the three primary colors of light, red, green, and blue. The value range

is 0- 255. The larger the value, the higher the brightness of the corresponding color

channel. If the values ​ ​ of the three color channels are the same, white light will

be emitted. The specific example is as follows:

1. if __name__ == '__main__':
2. LED = LED()

80

3. try:
4. while 1:
5. LED.colorWipe(255, 0, 0) #All lights turn red
6. time.sleep(1)
7. LED.colorWipe(0, 255, 0) # All lights turn green
8. time.sleep(1)
9. LED.colorWipe(0, 0, 255) # All lights turn blue
10. time.sleep(1)
11. except:
12. LED.colorWipe(Color(0,0,0)) #Turn off all lights

• The above code will control all the WS2812 lights to switch among the three

colors, press CTRL+C to exit the program.

• If you want to control the color of a single light, you can use the following code to

achieve, where i is the serial number of the light, the serial number of the first light

connected to the signal line from the driver board is 0, and the serial number of the

second light is 1. , And so on, R, G, B are the brightness corresponding to the three color

channels:

LED.strip.setPixelColor(i, Color(R, G, B))

LED.strip.show()

• Note: You must use the Color() method to pack the RGB value, and then pass it to

setPixelColor().

81

7. Controlling the Servo
In this lesson, we will learn how to control the servo.

7.1 Components needed for this course
Components Quantity Picture

Raspberry Pi 1

Robot HAT 1

180° Servo 1

7.2 Introduction of servo
What is a servo?

The servo is a position (angle) servo driver, which is suitable for those control

systems that require constant angle changes and can be maintained. It has been widely

used in high-end remote control toys, such as airplanes, submarine models, and remote

control robots.

We use a 180° servo in this lesson, which can move between 0° and 180°. Since the

180° servo can use the PWM signal to control the rotation angle of a certain mechanism,

it is commonly used in robot products. Module.

On our Raspberry Pi driver board Robot HAT, there is a dedicated PCA9685 chip

used to control the servo. Raspberry Pi uses I2C to communicate with PCA9685. The

servo is controlled by sending pulse signals from the microcontroller. These pulses tell

the servo mechanism of the servo where to move. The 180° servo is as follows:

82

7.3 Circuit diagram (wiring diagram)
When the 180° Servo module is in use, it needs to be connected to the servo interface

on the Robot HAT driver board. The yellow wire is connected to the yellow pin, the red

wire is connected to the red pin, and the brown wire is connected to the On the black pins,

as shown below:

7.4.1 Running the code
1. Remotely log in to the Raspberry Pi terminal.

83

2. Enter the command and press Enter to enter the folder where the program is located:

cd adeept_rasptankpro/server/

3. View the contents of the current directory file:

ls

4. Enter the command and press Enter to run the program:

sudo python3 servo.py

5. After running the program successfully, you will observe that the servo will rotate

regularly.

84

6. When you want to terminate the running program, you can press the shortcut key "Ctrl

+ C" on the keyboard.

7.4.2 Main code program
Complete code refer to servo.py / RPIservo.py

Control the servo to rotate to a certain angle

1. import Adafruit_PCA9685 # Import the library used to communicate with
PCA9685

2. import time
3.
4. pwm = Adafruit_PCA9685.PCA9685() # Instantiate the object used to control the PWM
5. pwm.set_pwm_freq(50) # Set the frequency of the PWM signal
6.
7. while 1： # Make the servo connected to the No. 3 servo port on the RobotHAT drive board reciprocate
8. pwm.set_pwm(3, 0, 300)
9. time.sleep(1)
10. pwm.set_pwm(3, 0, 400)
11. time.sleep(1)

• In the above code, set_pwm_freq(50) is used to set the PWM frequency to 50Hz.

This setting depends on the model of the servo. The servo used by our robot products

needs to be controlled by a 50Hz PWM signal. If you use For other servos, this value

needs to be set by referring to the specific servo documentation.

•Pwm.set_pwm(3, 0, 300) This method is used to control the rotation of a servo to a

certain position, where 3 is the port number of the servo, which corresponds to the

number marked on the RobotHAT driver board, but pay attention When the steering gear

is connected to the drive board, do not insert the ground wire, VCC and signal wire in the

reverse direction, brown to black, red to red, and yellow to yellow; 0 is the deviation

value for controlling the rotation of the steering gear, which is not used in our program

This function is used to correct the deviation (the cause of the error of the steering gear

can be referred to the precautions for structural assembly); 300 is the value of the PWM

85

duty cycle you want to set. Depending on the steering gear, this value represents a

different steering gear angle. The PWM duty cycle range of the servo we use is about 100

to 560, which corresponds to a rotation range of about 0° to 180°.

•Using the above code to control the steering gear does not control the rotation

speed of the steering gear. If we want a steering gear to slowly swing back and forth

between two positions, we need to use the method of increasing or decreasing variables

to control the steering gear.

Control the servo to move slowly

1. import Adafruit_PCA9685 # Import the library used to communicate with PCA9685
2. import time
3.
4. pwm = Adafruit_PCA9685.PCA9685() # Instantiate the object used to control the PWM
5. pwm.set_pwm_freq(50) # Set the frequency of the PWM signal
6.
7. while 1:
8. for i in range(0,100): # Make the steering gear move slowly from 300 to 400
9. pwm.set_pwm(3, 0, (300+i))
10. time.sleep(0.05)
11. for i in range(0,100): #Make the steering gear move slowly from 400 to 300
12. pwm.set_pwm(3, 0, (400-i))
13. time.sleep(0.05)

•Using the above code can make the steering gear rotate slowly back and forth

between 300 and 400, but this method of controlling the steering gear also has great

drawbacks. When the program is executed to the slow motion part of the steering gear, it

will be blocked, which will seriously affect The performance effect of the program, so a

multi-threaded solution is provided in our robot product program to solve this problem.

Non-blocking control method

• You can find the RPIservo.py file in the server folder of the robot product, copy it

to the same folder as the program you want to run, and then you can use this method in

your program.

86

1. import RPIservo # Import a library that uses multiple threads to control the steering gear
2. import time
3.
4. sc = RPIservo.ServoCtrl() # Instantiate the object that controls the servo
5. sc.start() # Start this thread, when the servo does not move, the thread is suspended
6.
7. while 1:
8. sc.singleServo(3, -1, 2)
9. time.sleep(1)
10. sc.stopWiggle()
11.
12. sc.singleServo(3, 1, 2)
13. time.sleep(1)
14. sc.stopWiggle()

• Use the above code to control the servo to reciprocate, except for time.sleep(), it

will not block the running of the context program.

• Call singleServo() to start motion, call stopWiggle() to stop motion, singleServo()

requires three parameters, which are the port number of the servo to be controlled (3 is to

control the No. 3 servo connected to RobotHAT) , The direction of the steering gear (1 or

-1), and the speed of the steering gear (the larger the value, the faster the movement).

87

8. Controlling Motor to Rotate
In this lesson, we will learn how to control the motor.

8.1 Components needed for this lesson
Components Quantity Picture

Raspberry Pi 1

Robot HAT 1

DC Motor 1

8.2 Introduction of DC Motor
RaspTank Pro robot products use a DC motor as a power device. DC motor is a

device that converts DC electrical energy into mechanical energy. It is widely used to

drive various equipment, such as electric fans, remote control cars, and power windows.

It is very suitable as The walking mechanism of the robot.

8.3 Circuit diagram (wiring diagram)
When the DC Motor module is in use, it needs to be connected to the motorA or

motorB interface on the Robot HAT drive board. The yellow wire is connected to the

yellow pin, the red wire is connected to the red pin, and the brown wire is connected On

the black pins, as shown below:

88

8.4 How to control Motor

8.4.1 Running the code
1. Remotely log in to the Raspberry Pi terminal.

2. Enter the command and press Enter to enter the folder where the program is located:

cd adeept_rasptankpro/server/

89

3. View the contents of the current directory file:

ls

4. Enter the command and press Enter to run the program:

sudo python3 move.py

After running the program successfully, you will observe that Motor will rotate for about

1 second and then stop, and the program will also stop. If you need the motor to rotate

again, you need to run the program again.

8.4.2 Main code program
The complete code reference file move.py.

1. import time
2. import RPi.GPIO as GPIO #Import the library used to control GPIO
3.
4. GPIO.cleanup() # Reset the high and low levels of the GPIO port
5. GPIO.setwarnings(False) # Ignore some irrelevant errors
6. GPIO.setmode(GPIO.BCM) # There are three coding methods for the GPIO port of the Raspberry Pi, we

choose BCM coding to define the GPIO port
7.
8. '''''
9. The following code definition is used to control the GPIO of the L298N chip. This definition is different for

different Raspberry Pi driver boards. To
10. '''
11. Motor_A_EN = 4
12. Motor_B_EN = 17

90

13.
14. Motor_A_Pin1 = 14
15. Motor_A_Pin2 = 15
16. Motor_B_Pin1 = 27
17. Motor_B_Pin2 = 18
18.
19. def motorStop(): # Stop motor rotation
20. GPIO.output(Motor_A_Pin1, GPIO.LOW)
21. GPIO.output(Motor_A_Pin2, GPIO.LOW)
22. GPIO.output(Motor_B_Pin1, GPIO.LOW)
23. GPIO.output(Motor_B_Pin2, GPIO.LOW)
24. GPIO.output(Motor_A_EN, GPIO.LOW)
25. GPIO.output(Motor_B_EN, GPIO.LOW)
26.
27. def setup(): # GPIO initialization, GPIO motor cannot be controlled without initialization
28. global pwm_A, pwm_B
29. GPIO.setwarnings(False)
30. GPIO.setmode(GPIO.BCM)
31. GPIO.setup(Motor_A_EN, GPIO.OUT)
32. GPIO.setup(Motor_B_EN, GPIO.OUT)
33. GPIO.setup(Motor_A_Pin1, GPIO.OUT)
34. GPIO.setup(Motor_A_Pin2, GPIO.OUT)
35. GPIO.setup(Motor_B_Pin1, GPIO.OUT)
36. GPIO.setup(Motor_B_Pin2, GPIO.OUT)
37.
38. motorStop() # Avoid the motor starting to rotate automatically after the initialization is completed
39. try: # Try here to avoid errors caused by repeated PWM settings
40. pwm_A = GPIO.PWM(Motor_A_EN, 1000)
41. pwm_B = GPIO.PWM(Motor_B_EN, 1000)
42. except:
43. pass
44.
45. def motor_A(direction, speed): # The function used to control the A port motor
46. if direction == 1:
47. GPIO.output(Motor_A_Pin1, GPIO.HIGH)
48. GPIO.output(Motor_A_Pin2, GPIO.LOW)
49. pwm_A.start(100)
50. pwm_A.ChangeDutyCycle(speed)
51. if direction == -1:
52. GPIO.output(Motor_A_Pin1, GPIO.LOW)
53. GPIO.output(Motor_A_Pin2, GPIO.HIGH)
54. pwm_A.start(100)
55. pwm_A.ChangeDutyCycle(speed)
56.
57. def motor_B(direction, speed): # The function used to control the B port motor
58. if direction == 1:

91

59. GPIO.output(Motor_B_Pin1, GPIO.HIGH)
60. GPIO.output(Motor_B_Pin2, GPIO.LOW)
61. pwm_B.start(100)
62. pwm_B.ChangeDutyCycle(speed)
63. if direction == -1:
64. GPIO.output(Motor_B_Pin1, GPIO.LOW)
65. GPIO.output(Motor_B_Pin2, GPIO.HIGH)
66. pwm_B.start(100)
67. pwm_B.ChangeDutyCycle(speed)
68.
69. '''''
70. Control the motors of port A and B to rotate at full speed for 3 seconds'''
71. motor_A(1, 100)
72. motor_B(1, 100)
73. time.sleep(3)
74.
75. '''''
76. Control the motors of port A and B to rotate in opposite directions at full speed for 3 seconds'''
77. motor_A(-1, 100)
78. motor_B(-1, 100)
79. time.sleep(3)
80.
81. '''''
82. Stop the motor of port A and B from rotating'''
83. motorStop()

• The above code can be used to control the movement of the motor. The structure of

the two functions motor_A and motor_B are the same, but the steering gear port to be

controlled is different. This function requires two parameters, one is the direction and the

other is the speed. The direction parameter can be 1 or -1, the minimum speed is 0 and

the maximum value is 100. Since the speed adjustment is adjusted by PWM, it is actually

equivalent to adjusting the voltage value of the motor port. The motor has a deceleration

mechanism as a load. When the voltage is too low The motor may not rotate, so the speed

value should not be too low.

•According to the actual situation, changing this speed value for a robot driven by a

motor will only slow down the starting speed of the robot, and has little effect on the

maximum speed, and when the given speed is too low, it will cause the motor to lock up.

92

9. Reading the Data of the Ultrasonic Ranging Module
In this lesson, we will learn how to read the data of the ultrasonic ranging module.

9.1 Components needed for this lesson
Components Quantity Picture

Raspberry Pi 1

Robot HAT 1

ultrasonic module 1

4 pin wire 1

9.2 Introduction of Ultrasonic Ranging Module
The ultrasonic ranging module used in our product has four pins, namely VCC, GND,

Echo and Trig. HC-SR04 can provide non-contact distance sensing function of 2cm-

400cm, and the ranging accuracy can reach 3mm ; Module includes ultrasonic transmitter,

receiver and control circuit. The basic working principle is as follows:

Use the IO port TRIG to trigger the ranging and give a high level signal of at least

10us.

The module automatically sends 8 40khz square waves, and automatically detects

whether there is a signal return.

There is a signal return, and a high level is output through the IO port ECHO. The

duration of the high level is the time from the ultrasonic wave to the return.

93

The principle of distance detection by ultrasonic ranging sensor, the method of

detecting distance by ultrasonic is called echo detection method, that is, the ultrasonic

transmitter emits ultrasonic waves in a certain direction, and the timer starts timing at the

same time as the launch time. The ultrasonic waves propagate in the air and encounter

obstacles on the way. When the object surface (object) is blocked, it will be reflected

back immediately, and the ultrasonic receiver will immediately stop timing when the

reflected ultrasonic wave is received. The propagation speed of ultrasonic waves in the

air is 340m/s. According to the time t recorded by the timer, the distance s from the

launch point to the obstacle surface can be calculated, namely: s=340t/2. Using this

principle of ultrasound, the ultrasonic ranging module is widely used in practical

applications, such as car reversing radar, drones, and smart cars.

When using Robot HAT driver board, the ultrasonic sensor needs to be connected to

the Ultrasonic interface on the driver board, and must not be connected to the IIC port to

avoid burning the ultrasonic module. (IIC is an interface used to connect I2C devices, and

the pin positions of VCC and GND are different from Ultrasonic).

94

9.3 Circuit diagram (wiring diagram)
When using the Robot HAT driver board, you need to connect the ultrasonic sensor

to the Ultrasonic interface on the driver board. Do not connect to the IIC port to avoid

burning the ultrasonic module. (IIC is an interface used to connect I2C devices, and the

pin positions of VCC and GND are different from Ultrasonic).

95

9.4 Obtaining the data of the ultrasonic sensor

9.4.1 Running the code
1. Remotely log in to the Raspberry Pi terminal.

2. Enter the command and press Enter to enter the folder where the program is located:

cd adeept_rasptankpro/server/

3. View the contents of the current directory file:

ls

4. Enter the command and press Enter to run the program:

sudo python3 ultra.py

96

5. After successfully running the program, the command window will display the

distance data of the obstacle detected by the ultrasonic sensor. When you use an object to

approach it directly in front of the ultrasonic sensor, the detected distance data will

change.

6. When you want to terminate the running program, you can press the shortcut key "Ctrl

+ C" on the keyboard.

9.4.2 Main code program
The complete code reference file ultra.py.

1. import RPi.GPIO as GPIO
2. import time
3.
4. Tr = 11 # Pin number of the input end of the ultrasonic module
5. Ec = 8 # Pin number of the output end of the ultrasonic module
6.
7. GPIO.setmode(GPIO.BCM)
8. GPIO.setup(Tr, GPIO.OUT,initial=GPIO.LOW)
9. GPIO.setup(Ec, GPIO.IN)
10.
11. def checkdist():
12. GPIO.output(Tr, GPIO.HIGH) # Set the input terminal of the module to high level, and send out an initial

sound wave
13. time.sleep(0.000015)
14. GPIO.output(Tr, GPIO.LOW)
15.
16. while not GPIO.input(Ec): # When the module no longer receives the initial sound wave
17. pass
18. t1 = time.time() # Write down the time when the initial sound wave was emitted
19. while GPIO.input(Ec): # When the module receives the return sound wave
20. pass
21. t2 = time.time() # Write down the time when the return sound wave was captured
22.
23. return round((t2-t1)*340/2,2) # Calculate the distance
24.
25. '''''
26. Output the ultrasonic ranging result once every second, output ten times
27. '''
28. for i in range(10):

97

29. print(checkdist())
30. time.sleep(1)
• Regarding the ultrasound module, since this is a commonly used module and is

often used in many primary projects, in order to reduce the complexity of the program,

although there are some blocking parts in this code, we did not use multithreading to

solve If your project has a high demand for product expression, you can refer to the

reconstruction of multi-threaded ultrasound.

• When your project needs to use the ultrasonic function, you do not need to rewrite

the above code, just copy the ultra.py in the server folder of the robot program to the

same folder as your own project. Then use the following code to get the ultrasonic

ranging information:

1. import ultra
2. distance = ultra.checkdist()

98

10.RaspTank Pro Assembly Tutorial and Precautions

10.1 Documentation for structure assembly

Parts List

Copper pillar

M2*6 x4

M2.5*6+6 x8

M2.5*14 x4

M3*20 x8

M3*30 x4

M3*60 x4

Nylon column

M3*20 x4

M3*40 x7

Round head screw

M2*8 x14

M2*14 x4

M2.5*4 x8

M2.5*8 x2

M2.5*12 x1

99

M3x4 x44

M3x10 x40

M4x45 x2

Flat head screw

M3x6 x2

M3x16 11

Self-tapping screws

M1.4x6 x4

M1.7x6x6 x10

Nuts

M2 x22

M3 x12

Locknut

M3LOCK x13

M4LOCK x2

Mechanical Parts

F624ZZ bearing x2

481 metal gasket x4

Track (including coupling and wheels) x2

51105 Thrust Bearing x1

100

Electrical parts

0.96 OLED screen x1

18650 battery holder x1

RobotHAT driver board x1

MPU6050 (pin) x1

130 rpm DC motor (with cable) x2

WS2812 light bar x2

Ultrasonic (horizontal anti-reverse connection) x1

Tracking module x1

MG946R servo x2

AD002 servo x3

Camera Module x1

Camera long cable x1

3pin wire (2812) x2

4pin wire x2

5pin wire x1

Servo extension wire x2

Tool

Winding Pipe: 1

Large Cross-head Screwdriver: 1

101

Small Cross-head Screwdriver: 1

Cross Socket Wrench: 1

Hexagon screwdriver suitable for the hexagon socket screws of the track coupling: 1

Bring your own parts

Raspberry Pi x1

18650 battery x2 (Choose an 18650 battery with "high rate discharge", or choose an

18650 battery that supports a maximum output current of at least 4A)

10.2 Tips for structural assemblage
Due to the large number of servo used in this product, the installation of the servo

has a greater impact on the performance of the product, so you need to power on the

servo and control the servo to rotate to the middle position before installing the servo

rocker arm, in this way, the rocker arm of the servo installed at the specified angle can be

in the middle position of it.

Steps to power on the servo:

1.Boot the Raspberry Pi.

102

2.Install the servo. Pay attention to the direction of the interface during installation.

The yellow wire is connected to the yellow pin, the red wire is connected to the red pin,

and the brown wire is connected to the black pin.

3.After the Raspberry Pi is powered on, it will automatically run webServer.py, and

after webServer.py is running, it will control all the servo ports to send signals to move to

the middle position. When you install the servo rocker arm, you can connect the servo to

any port at any time. When the servo is connected to the port, the servo will rotate to the

middle position. Install the rocker arm according to the specified angle then you can

disconnect the servo from the port and plug in a new servo that has not been installed

with a rocker arm. This new servo without a rocker arm will also rotate to the middle

position.

4. It takes a while to boot the Raspberry Pi to control the PCA9685 to set all the

servo ports to the signal to rotate to the middle position. The boot process of the

Raspberry Pi is about 30-50s.

5. All the servo rocker arm installation angles shown in the document are the middle

position of the servo rotation. When the servo is turned on to the middle position, install

the servo rocker arm at the angle shown in the document.

6. Note: all lock nuts involved in this document should not be tightened.

103

10.3 Precautions for power supply during assembly
1. When you are performing software installation, structural assembly or program

debugging, you can use a USB cable to power the Raspberry Pi. If the Raspberry Pi is

installed with RobotHAT, you can connect the USB cable to the USB port on the

RobotHAT. RobotHAT will power the Raspberry Pi with the GPIO interface.

2. Different raspberry parties have different current requirements. For example, the

Raspberry Pi 3B needs at least 2A to boot up, and the Raspberry Pi 4 needs 3A to boot

normally. You can check before you use the power adapter to power the Raspberry Pi.

The specifications on your power adapter.

3. When RobotHAT is connected to a load, such as a motor or multiple servos, a

high-current power supply is required to connect to the Vin on the RobotHAT. You can

use two 18650 batteries that support high-current to power the RobotHAT.Our product

will provide a 18650 battery holder with 2pin interface, you can directly connect it with

RobotHAT.

4. When using the USB interface on RobotHAT to supply power, the switch of

RobotHAT does not control whether to supply power, the switch of RobotHAT can only

control the power supply of Vin.

5. Do not use the USB port and Vin on the RobotHAT to supply power at the same

time. If you need to debug the program for a long time and do not want to remove the

battery, you can turn the switch on the RobotHAT to OFF, so that when you use the USB

cable to connect to the RobotHAT , RobotHAT is powered by USB.

6. If your robot restarts automatically after booting, or disconnects and restarts at the

moment the robot starts moving after normal booting, it is most likely because your

power supply does not output enough current. The robot will automatically restart when it

is turned on. Run the program to place all the servos in the neutral position. The voltage

drop generated during this process causes the Raspberry Pi to restart.

104

7. We tested that the peak current of the robot is around 3.75A when using 7.4V

voltage power supply, so you need to use a battery that supports 4A output.

8. You can also use power lithium battery to power RobotHAT, RobotHAT supports

power supply below 15V.

9. When installing the servo rocker arm in the structure assembly, you can use the

USB cable to power the RobotHAT. After the Raspberry Pi with the robot software

installed, it will control the RobotHAT to set all the servo ports to output neutral signals.

You can connect the servo to any servo port, the gear of the servo will turn to the neutral

position, and then you can install the servo rocker arm according to the specified angle.

After the rocker arm is installed, you can disconnect the servo and RobotHAT. When you

need to install the rocker arm of the second servo, connect the second servo to any servo

port on the drive board.

105

10.4 Assembly

10.4.1 Screw color description

•In order to make the structural assembly process more intuitive, we dye the screws

used in the product. During the assembly process, you can refer to the fastener color in

the tutorial to determine which type of screw and nut to use.

•The actual color of the product is subject to the product, and the actual screws are

not colored.

106

• The screws of M1.4x6 and M4x45 are very different, so we use silver in the

tutorial and they are not dyed.

10.4.2 Robotic arm assembly

Use two M3X16 screws and two M3 nuts to fix the three acrylic panels shown above on

the aluminum alloy base of the robotic arm.

107

Prepare the acrylic panel shown on the right side of the above picture. There is no need to

fix it on the assembled component. Since the acrylic panel on the right has directions, the

rendering diagram will fix it on the component to indicate the subsequent assembly

position.

108

Prepare the acrylic panel and acrylic gasket as shown in the picture

above.

Use M3X16 screws and M3-LOCK lock nuts to fix the acrylic panel and acrylic washer

as shown in the figure on the side panel. It should be noted that the lock nut should not be

tightened too tightly, because this is the rotating pair of the movable part. After tightening,

it will not be able to rotate and the servo will be blocked.

• • Note: All lock nuts involved in this document should not be tightened.

109

Use M2X8 screws and M2 nuts to fix the AD002 servo on the acrylic panel shown in the

figure above. The acrylic panel here is similar in shape to the acrylic panel just installed,

except that there are more mounting holes for fixing the

servo.

It looks like the picture above after installation.

110

Prepare the acrylic panel (top panel of GRIPPER) and AD002 servo as shown in the

picture above.

Use M2X8 screws and M2 nuts to fix AD002 servo to the upper panel of the arm chuck.

111

Assemble the upper panel and lower panel of the chuck. Here you can load the gear

shown above between the servo arm and the lower panel. For the time being, you don’t

need to fix it. You only need to know that the gear is installed here. The gear is clamped

in this position to avoid the gear cannot be installed due to too small gap after assembly.

112

Use four M3X20 nylon posts and eight M3X10 screws to fix the left and right panels of

the chuck together.

113

As shown above, tighten the M3X10 screws. Use 1 M2.5x12 Screw and 1 M1.7x6x6 self-

tapping screw to fix.

The assembled appearance is shown in the figure.

114

Use three M3X10 screws to fix the acrylic washer and M3X40 nylon column to the side

panel of the robot arm.

Use three M3X10 screws to fix the panel on the other side.

115

Use M1.7X6X6 self-tapping screws to fix the side panel and the servo arm, and use

M2.5X8 screws to fix the servo to the side panel.

The assembled look is shown in the figure above.

Prepare the gear on the other side and the connecting rod parts for the chuck.

116

The installation method is shown in the figure above.

Use M3X10 screws and M3-LOCK locknuts to assemble the connecting rods.

117

The robot arm after assembly is as shown in the figure above.

10.4.3 Body assembly

118

Use M3X4 screws to fix the M3X30 on the aluminum alloy base. The specific

installation location is shown in the figure below.

Use M2X14 screws to pierce through the side panel of the aluminum alloy base,then

pierce through M2X6 copper posts and WS2812 light bar, and use M2 nuts to fix.

119

The light bar on the other side is installed as above.

120

Use M3X4 screws to fix the M3X20 copper column on the aluminum alloy base, and use

M3X6 countersunk head screws and M3 nuts to fix the battery holder on the aluminum

alloy base. The fixed position is shown in the figure below.

121

The picture above shows the fixed position of the M3X20 copper column and the battery

holder.

122

Use M1.4X6 self-tapping screws to fix the ultrasonic module on the lower plate.

123

Use M3X10 screws and M3 nuts to fix the tracking module on the lower plate. Note that

the arrow on the tracking module needs to point to the front of the robot to install.

124

Use M3X4 screws to fix the lower plate to the base.

125

Install the F624ZZ bearing to the base.

126

Use M3X10 screws to fix. Prepare the metal gasket as shown in the picture, and install it

between the bearing and the wheel.

127

Use M4X45 screws to install the wheels.

128

Use M4-LOCK lock nuts to fix the wheels. Note that the spacers as shown in the figure

also need to be installed between the lock nuts and the bearings.

It looks like the picture after installation.

129

Use the same method to install the bearings and wheels on the other side.

130

Install the motor and the coupling. The coupling screws need to be tightened. Use M3X4

screws to fix the motor to the base.

131

Use the same method to install the motor on the other side.

Install tracks on both sides.

132

Use M3X10 screws to fix the wheel to the coupling.

133

The installation method is the same on the other side.

134

Use M3X4 screws and M2.5X4 screws to fix the M3X60 copper posts and M2.5X6+6

copper posts on the upper section. The specific fixing position is shown in the figure

below.

135

The installation location is shown in the figure.

136

Use M3X4 screws to fix the upper plate to the base.

Use M2.5X14 copper posts to fix the Raspberry Pi to the base. At this time, you need to

connect the camera cable to the Raspberry Pi.

137

Use M2.5X4 screws to fix the Robot HAT driver board to the Raspberry Pi.

138

10.4.4 PTZ assembly

139

Use M3X4 screws to fix the servo to the servo bracket as shown in the two pictures

above. The servo bracket has tapped threads, so no nuts are needed for installation here.

Use M3X4 screws to fix the servo bracket to the PTZ base.

140

Use M2X8 screws and M2 nuts to fix the AD002 servo to the base of the PTZ.

141

Install the round rocker arm of the large metal servo, and pierce the M3X16 screws

through the round aluminum alloy parts shown below.

142

Use M1.7X6X6 self-tapping screws and M3X10 screws to fix the round aluminum alloy

parts to the servo rocker arm and servo.

【Attention】:

(1) When installing the M3X10 screw, the M3X10 screw must be aligned with the center

point of the round aluminum alloy part and be relatively vertical, so that the M3X10

screw can be rotated smoothly.

(2) If the M3X10 screw cannot be rotated in, it may be that you did not align the center

point of the vertical round aluminum alloy part when installing the M3X10 screw, which

caused the M3X10 screw to have an inclined angle when installed, and it would not be

able to rotate in. For slipping, we recommend that you use a flat-blade screwdriver to

remove the M3X10 screw, clean the thread of the M3X10 screw, and then reinstall the

M3X10 screw. The M3X10 screw must be aligned with the center point of the round

aluminum alloy part and relatively vertical.

143

Then install a round aluminum alloy part, and then install 51105 thrust bearing.

144

Install the 51105 thrust bearing. Note here that the thrust bearing consists of three

separate parts. Subsequent assembly will compress the thrust bearing.

145

Install the PTZ base assembly to the section below the PTZ. Use M2X8 screws and M2

nuts to install the OLED screen.

Use the M3 nut to fix the PTZ base assembly to the lower section. The side view is

shown in the figure above. After tightening the nut, the thrust bearings are fixed together

and the PTZ base assembly can rotate normally.

146

Use M3X4 screws to fix the upper plate assembly to the body assembly. Before

performing this step, you need to connect the cable. Refer to the wiring method chapter

for details.

147

Use 4 M2X8 screws and 8 M2 nuts to install the Raspberry Pi camera to the aluminum

alloy camera bracket.

Use M2.5X8 screws and M1.7X6X6 self-tapping screws to fix the aluminum alloy

camera bracket to the servo rocker arm and servo.

148

Use M3X10 screws and M3-LOCK lock nuts to fix the robot arm to the base of the PTZ.

Note here that the lock nuts cannot be tightened too much, otherwise it will affect the

rotation of the robot arm assembly.

149

After the installation is complete, as shown above.

150

Use M3X10 screws and M3 nuts to fix the servo to the base of the PTZ.

151

Use M3X10 screws and M1.7X6X6 self-tapping screws to connect the robot arm to the

PTZ base.

152

The assembly is complete.

10.4.5 Wiring method

●If you don’t know how to connect the camera, you can refer to the official

documentation of the Raspberry Pi camera.

●The motor on the left is connected to the MOTOR-B port; the motor on the right is

connected to the MOTOR-A port.

●The bottom servo that controls the pan/tilt component to swing left and right is

connected to the Port 0 servo port of the driver board.

●There are two servos that control the mechanical arm to swing up and down. One is

large and one is small. The large servo fixed on the PTZ assembly is connected to the

Port 1 servo port, and the small servo fixed in the middle of the mechanical arm is

connected to Port 2 Servo port.

153

●The servo that controls the gripping action of the chuck is connected to the Port 3 servo

port.

●The servo that controls the tilting motion of the camera is connected to the Port 4 servo

port.

●The ultrasound module is connected to the Ultrasonic port using a 4pin cable. Never

connect the ultrasound to the IIC port, as the ultrasound module will be permanently

damaged.

●The WS2812 light bar is connected to the WS2812 port using a 3pin cable. Note here

that the signal to control the light is sent by the Raspberry Pi and sent to the WS2812

light bar by the 3PIN line by the driver board. A section with white stripes drawn from

the light bar needs to be connected (The text of the interface on the back of this end is

marked with IN). Take it out from the other end of the light bar (the interface is marked

OUT) and connect it to the input end of the next light bar by the 3PIN line (the white

stripe is drawn and the interface is marked with IN).

●The OLED screen is connected to the IIC port of the driver board via a 4PIN cable.

●MPU6050 is inserted into the 8PIN Dupont port on the front of the driver board.

●The power supply is connected to the VIN port.

●The tracking module is connected to the Tracking port via a 5PIN wire.

•

154

155

156

157

158

11.Controlling RaspTank Pro for Infrared Line Tracking

11. 1 Infrared line tracking module
●Some of our robot products are equipped with a three-channel infrared line patrol

module. The line patrol module is converted to the robot's line patrol function design.

The three-channel infrared line patrol module contains 3 groups of sensors, where each

group of sensors consists of an infrared emitting LED and an infrared sensor

photoelectric Transistor composition, the robot determines whether there is a line

detected by detecting the infrared light intensity detected by the infrared sensor

phototransistor. It can detect the white line (reflected infrared light) on a black

background (non-reflected infrared light), and can also detect a white background The

black line on (reflects infrared light) (does not reflect infrared light).

●Since the Raspberry Pi can only read digital signals, the three-channel infrared

tracking module is equipped with a potentiometer. You can use a cross screwdriver to

adjust the potentiometer on the infrared tracking module to adjust the sensitivity of the

infrared sensor phototransistor.

●Our program defaults to finding black lines on a white background (reflecting

infrared light) (not reflecting infrared light).

●Before using the three-channel infrared line patrol module, you need to connect it

to the Tracking interface on Robot HAT using a 5-pin cable.

●The three-way infrared line patrol module has an arrow pattern on the back of the

sensor. The direction of the arrow is the direction of the robot.

On the white paper "road" with black lines drawn, because the black lines and white

paper have different reflection coefficients of light, the "road"-the black line can be

judged according to the intensity of the received reflected light. In the Tracking module, a

more common detection method-infrared detection method is used.

159

Infrared detection method uses infrared rays to have different reflection properties

on different colored physical surfaces. When the car is running, the infrared light is

continuously emitted to the ground. When the infrared light meets the white ground, the

diffuse emission occurs, and the reflected light is received by the receiving tube installed

on the car; if it encounters a black line, the infrared light is absorbed, and the car The

receiver tube on the receiver cannot receive the signal.

11.2 Preparation
1. The assembled RaspTank Pro.

2. Make a patrol track.

160

11.3 Running line tracking program
1. Turn on RasTankPro, the boot time is about 1 minute (webServer.py will run

automatically when the machine is turned on).

2. After RasTankPro is turned on, enter the IP address of your Raspberry Pi through the

Google browser of your mobile phone or computer, and access port 5000, for example:

192.168.3.44:5000. The web controller will then be displayed on the browser.

161

1. Put the car on the ready-made patrol track.

2. Click "TRACK LINE", RasTank Pro starts to drive along the black line.

3. When you want to terminate the line tracking function, you can click "TRACK

LINE" again.

4. The height of the line patrol module of RasTank Pro from the ground is about

14mm. When the line-following module cannot be used normally, please refer to:

Line-following module adjustment tutorial. Tutorial link:

https://www.adeept.com/learn/detail-49.html

11.4 Main code program
The complete code reference file functions.py.

1. import RPi.GPIO as GPIO
2. import time
1. import move
3.
4.
5. # The output pins of the hunting module
6. line_pin_right = 19
7. line_pin_middle = 16

https://www.adeept.com/learn/detail-49.html

162

8. line_pin_left = 20
9.
1. Dir_forward = 0
2. Dir_backward = 1
3.
4. left_forward = 1
5. left_backward = 0
6.
7. right_forward = 0
8. right_backward= 1
10.
11. mark = 0
12. '''''
13. Initialize your GPIO port related to the line patrol module
14. '''
15. def setup():
16. GPIO.setwarnings(False)
17. GPIO.setmode(GPIO.BCM)
18. GPIO.setup(line_pin_right,GPIO.IN)
19. GPIO.setup(line_pin_middle,GPIO.IN)
20. GPIO.setup(line_pin_left,GPIO.IN)
21.
1. class Functions(threading.Thread):
2. ...
3.
4. def trackLineProcessing(self):
5. status_right = GPIO.input(line_pin_right)
6. status_middle = GPIO.input(line_pin_middle)
7. status_left = GPIO.input(line_pin_left)
8. global mark
9. if status_left ==0 and status_middle == 1 and status_right ==0:# (0 1 0)
10. move.motor_left(1, left_forward, 80) # move.motor_left(status, left_forward, speed) status:1 mean

s action, 0 means end. left_forward:Left motor forward. speed: motor speed.
11. move.motor_right(1, right_forward, 80)# right_forward: Right motor forward
12. mark = 1
13.
14. elif status_left ==1 and status_middle == 1 and status_right ==0:# (1 1 0)
15. if mark !=2:
16. move.motor_left(1, left_backward, 80) # left_backward: Left motor backward
17. move.motor_right(1, right_backward, 80) # right_backward: Right motor backward
18. time.sleep(0.03)
19. move.motor_left(1, left_forward, 70)
20. move.motor_right(1, right_forward, 100)
21. mark = 2
22.
23. elif status_left ==1 and status_middle == 0 and status_right ==0:#(1 0 0)

163

24. if mark !=3:
25. move.motor_left(1, left_backward, 80)
26. move.motor_right(1, right_backward, 80)
27. time.sleep(0.03)
28. move.motor_left(1, left_forward, 0)
29. move.motor_right(1, right_forward, 100)
30. time.sleep(0.02)
31. mark = 3
32.
33. elif status_left ==0 and status_middle == 1 and status_right ==1:# (0 1 1)
34. if mark !=4:
35. move.motor_left(1, left_backward, 80)
36. move.motor_right(1, right_backward, 80)
37. time.sleep(0.03)
38. move.motor_left(1, left_forward, 100)
39. move.motor_right(1, right_forward, 70)
40. mark = 4
41.
42. elif status_left ==0 and status_middle == 0 and status_right ==1:# (0 0 1)
43. if mark !=5:
44. move.motor_left(1, left_backward, 80)
45. move.motor_right(1, right_backward, 80)
46. time.sleep(0.03)
47. move.motor_left(1, left_forward, 100)
48. move.motor_right(1, right_forward, 0)
49. time.sleep(0.02)
50. mark = 5
51.
52. else:
53. if mark ==0 :
54. move.motor_left(1, left_forward, 80)
55. move.motor_right(1, right_forward, 80)
56. elif mark == 1:
57.
58. move.motor_left(1, left_forward, 80)
59. move.motor_right(1, right_forward, 80)
60. elif mark == 2 or mark == 3: # (1 0 0)
61.
62. move.motor_left(1, left_forward, 0)
63. move.motor_right(1, right_forward, 100)
64. time.sleep(0.03)
65. elif mark == 4 or mark == 5:
66.
67. move.motor_left(1, left_forward, 100)
68. move.motor_right(1, right_forward, 0)
69. time.sleep(0.03)

164

70.
71. time.sleep(0.1)
22.
23. if __name__ == '__main__':
24. setup()
25. while 1:
26. Functions().trackLineProcessing()
• When your project needs to use the line tracking function, you don’t need to

rewrite the above code, just copy functions.py and move.py in the server folder of the

robot program to the same as your own project In the folder of, then use the following

code to use the line tracking function:

1. import functions
2.
3. functions.setup()
4.
5. while 1:
6. functions.trackLineProcessing()
•The reason why you need to import move.py is because functions.py needs to use t

he methods in move.py to control the movement of the robot. If you use other methods to

control the movement of the robot, then you only need to rewrite the relevant code in fun

ctions.py That's it.

165

12. Using Multithreading to Make Police Lights and Breathing Lights

12.1 Multi-threading introduction
●This chapter introduces the use of multi-threading to achieve some effects related

to WS2812 LED lights. Multi-threading is a commonly used operation in robot projects.

Because robots have high requirements for real-time response, when performing a certain

task, try not to block main thread communication.

●Multi-threading is similar to executing multiple different programs or tasks

simultaneously. Multi-threading has the following advantages:

·Using threads can put long-running tasks in the background for processing.

·To improve the operating efficiency of the program, the subsequent real-time video

and OpenCV processing of video frames use multi-threading to greatly increase the frame

rate.

·The encapsulated multi-threaded task is more convenient to call, similar to the non-

blocking control method in the steering gear control, which is the control method of the

steering gear encapsulated by multi-threading

●We use Python's threading library to provide thread-related work. Threads are the

smallest unit of work in an application. The current version of Python does not provide

multi-thread priority, thread group, and thread cannot be stopped, suspended, resumed

and interrupted.

12.2 Realizing the WS2812 LED lighting effect with multithreading

12.2.1 Running the line tracking program
1. Turn on RasTank Pro, the boot time is about 1 minute.

166

2. After RasTank Pro is turned on, enter the IP address of your Raspberry Pi through the

Google browser of your mobile phone or computer, and access port 5000, for example:

192.168.3.44:5000. The web controller will then be displayed on the browser.

3. Click "POLICE LIGHT", RaspTank Pro starts to flash lights of different colors.

4. When you want to stop the warning light function, click "POLICE LIGHT" again.

12.3 Main code program
The complete code reference file robotLight.py.

12.3.1 Realization of warning lights/breathing lights
• We use the following code to achieve multi-threaded control of LED lights, and

when the LED does not change, keep the thread blocked to avoid wasting CPU resources.

• Here we use the wait() method to block the thread. From the realization of the

requirement of controlling the thread, the code and comments are as follows:

167

1. import time
2. import sys
3. from rpi_ws281x import *
4. import threading
5.
6.
7. '''''
8. Use the Threading module to create a thread, inherit directly from threading.Thread, and then rewrite the

__init__ method and run method'''
9. class RobotLight(threading.Thread):
10. def __init__(self, *args, **kwargs):
11. '''''
12. Some LED lamp settings are initialized here
13. '''
14. self.LED_COUNT = 16 # Number of LED pixels.
15. self.LED_PIN = 12 # GPIO pin connected to the pixels (18 uses PWM!).
16. self.LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz)
17. self.LED_DMA = 10 # DMA channel to use for generating signal (try 10)
18. self.LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest
19. self.LED_INVERT = False # True to invert the signal (when using NPN transistor level shift)
20. self.LED_CHANNEL = 0 # set to '1' for GPIOs 13, 19, 41, 45 or 53
21.
22. '''''
23. Set the brightness of the three color channels of RGB, there is no need to change here, these values

​ ​ will be automatically set after the subsequent call of the breathing light function
24. '''
25. self.colorBreathR = 0
26. self.colorBreathG = 0
27. self.colorBreathB = 0
28. self.breathSteps = 10
29.
30. '''''
31. Mode variable,'none' will cause the thread to block and hang, and the light will not change;
32. 'police' is the police light mode, red and blue flashing alternately;
33. The'breath' breathing light can be set to a specified color.
34. '''
35. self.lightMode = 'none' #'none' 'police' 'breath'
36.
37. # Create NeoPixel object with appropriate configuration.
38. self.strip = Adafruit_NeoPixel(self.LED_COUNT, self.LED_PIN, self.LED_FREQ_HZ,
39. self.LED_DMA, self.LED_INVERT, self.LED_BRIGHTNESS,
40. self.LED_CHANNEL)
41. # Intialize the library (must be called once before other functions).
42. self.strip.begin()
43.
44. super(RobotLight, self).__init__(*args, **kwargs)

168

45. self.__flag = threading.Event()
46. self.__flag.clear()
47.
48. # Define functions which animate LEDs in various ways.
49. def setColor(self, R, G, B):
50. '''''
51. Set the color of all lights
52. '''
53. color = Color(int(R),int(G),int(B))
54. for i in range(self.strip.numPixels()):
55. self.strip.setPixelColor(i, color)
56. self.strip.show()
57.
58.
59. def setSomeColor(self, R, G, B, ID):
60. '''''
61. Set the color of a few lights, and the ID is an array of the serial numbers of the lights
62. '''
63. color = Color(int(R),int(G),int(B))
64. #print(int(R),' ',int(G),' ',int(B))
65. for i in ID:
66. self.strip.setPixelColor(i, color)
67. self.strip.show()
68.
69.
70. def pause(self):
71. '''''
72. Call this function, set __flag to False, and block the thread
73. '''
74. self.lightMode = 'none'
75. self.setColor(0,0,0)
76. self.__flag.clear()
77.
78.
79. def resume(self):
80. '''''
81. Call this function, set __flag to True, and start the thread
82. '''
83. self.__flag.set()
84.
85.
86. def police(self):
87. '''''
88. Call this function to turn on the warning light mode
89. '''
90. self.lightMode = 'police'

169

91. self.resume()
92.
93.
94. def policeProcessing(self):
95. '''''
96. The concrete realization of the warning light mode
97. '''
98. while self.lightMode == 'police':
99. '''''
100. Blue flashes 3 times
101. '''
102. for i in range(0,3):
103. self.setSomeColor(0,0,255,[0,1,2,3,4,5,6,7,8,9,10,11])
104. time.sleep(0.05)
105. self.setSomeColor(0,0,0,[0,1,2,3,4,5,6,7,8,9,10,11])
106. time.sleep(0.05)
107. if self.lightMode != 'police':
108. break
109. time.sleep(0.1)
110. '''''
111. Red flashing 3 times
112. '''
113. for i in range(0,3):
114. self.setSomeColor(255,0,0,[0,1,2,3,4,5,6,7,8,9,10,11])
115. time.sleep(0.05)
116. self.setSomeColor(0,0,0,[0,1,2,3,4,5,6,7,8,9,10,11])
117. time.sleep(0.05)
118. time.sleep(0.1)
119.
120.
121. def breath(self, R_input, G_input, B_input):
122. '''''
123. To call this function to turn on the breathing light mode, you need to enter three parameters,

which are the brightness of the three color channels of RGB, as the color when the brightness of the breathing
light is maximum

124. '''
125. self.lightMode = 'breath'
126. self.colorBreathR = R_input
127. self.colorBreathG = G_input
128. self.colorBreathB = B_input
129. self.resume()
130.
131.
132. def breathProcessing(self):
133. '''''
134. Specific implementation method of breathing light

170

135. '''
136. while self.lightMode == 'breath':
137. '''''
138. All lights gradually brighten
139. '''
140. for i in range(0,self.breathSteps):
141. if self.lightMode != 'breath':
142. break
143. self.setColor(self.colorBreathR*i/self.breathSteps,
144. self.colorBreathG*i/self.breathSteps,
145. self.colorBreathB*i/self.breathSteps)
146. time.sleep(0.03)
147. '''''
148. All lights gradually dim
149. '''
150. for i in range(0,self.breathSteps):
151. if self.lightMode != 'breath':
152. break
153. self.setColor(self.colorBreathR-(self.colorBreathR*i/self.breathSteps),
154. self.colorBreathG-(self.colorBreathG*i/self.breathSteps),
155. self.colorBreathB-(self.colorBreathB*i/self.breathSteps))
156. time.sleep(0.03)
157.
158.
159. def lightChange(self):
160. '''''
161. This function is used to select tasks to execute
162. '''
163. if self.lightMode == 'none':
164. self.pause()
165. elif self.lightMode == 'police':
166. self.policeProcessing()
167. elif self.lightMode == 'breath':
168. self.breathProcessing()
169.
170.
171. def run(self):
172. '''''
173. Functions for multi-threaded tasks
174. '''
175. while 1:
176. self.__flag.wait()
177. self.lightChange()
178. pass
179.
180.

171

181. if __name__ == '__main__':
182. RL=RobotLight() # RL=RobotLight() # Instantiate the object that controls the LED light
183. RL.start() # Start thread
184.
185. '''''
186. Start breathing light mode and stop after 15 seconds
187. '''
188. RL.breath(70,70,255)
189. time.sleep(15)
190. RL.pause()
191.
192. '''''
193. Pause for 2 seconds
194. '''
195. time.sleep(2)
196.
197. '''''
198. Start the warning light mode and stop after 15 seconds
199. '''
200. RL.police()
201. time.sleep(15)
202. RL.pause()

12.3.2 Using warning lights or breathing lights in other projects
• When your project needs to use LED warning lights or breathing lights, you don’t

need to rewrite the above code, just copy robotLight.py in the server folder of the robot

program to the same as your own project In the folder, then use the following code to use

the warning light or breathing light:

1. import robotLight
2.
3. RL=robotLight.RobotLight() # Instantiate the object that controls the LED light
4. RL.start() # Start the thread
5.
6. '''''
7. Start breathing light mode and stop after 15 seconds
8. '''
9. RL.breath(70,70,255)
10. time.sleep(15)
11. RL.pause()
12.
13. '''''
14. Pause for 2 seconds

172

15. '''
16. time.sleep(2)
17.
18. '''''
19. Start the warning light mode and stop after 15 seconds
20. '''
21. RL.police()
22. time.sleep(15)
23. RL.pause()

173

13. Controlling RaspTank Pro to Automatically Avoid Obstacles

13.1 Introduction to Automatic Obstacle Avoidance
Since the ultrasonic module of this product can only move up and down with the

camera, and the left and right movement can only move with the body left and right, and

cannot move left and right relative to the body, so the obstacle avoidance function of this

robot is relatively simple, as long as there is an obstacle in front of it. Turn left, if the

obstacle is too close, go backwards, if the obstacle is far away or there is no obstacle,

move forward.

13.2 Turning on automatic obstacle avoidance function

13.2.1 Running automatic obstacle avoidance program
1. Turn on RaspTank Pro, the boot time is about 1 minute.

2. After RaspTankPro is turned on, enter the IP address of your Raspberry Pi with the

Google browser of your mobile phone or computer, and access port 5000, for example:

192.168.3.44:5000 (see lesson 2 for detailed steps). The web controller will then be

displayed on the browser.

174

3. Place the car on the prepared patrol track.

4. After clicking "AUTO MATIC", the robot will automatically avoid obstacles when

encountering obstacles. .

5. When you want to terminate the automatic obstacle avoidance function, you can click

"AUTO MATIC" again.

13.3 Main code program
The complete code reference file functions.py.

• The automatic obstacle avoidance function is implemented based on the ultrasonic

distance measurement module, so before writing your project, first copy ultra.py and

move.py to the same file directory as your project, and then use the following code To

use the automatic obstacle avoidance function.完整代码参考文件 functions.py。

1. import ultra
2. import move
3. import time
4.
5. '''''
6. Initialize the motor and set the obstacle avoidance distance
7. '''
8. move.setup()
9. rangeKeep = 0.5
10.
11. def automaticProcessing():
12. if rangeKeep/3 > ultra.checkdist():
13. '''''
14. If the distance detected by the ultrasound is less than 1/3 of the obstacle avoidance distance, go

backwards
15. '''
16. move.move(100, 'backward', 'no', 0.5)
17.
18. elif rangeKeep > ultra.checkdist():
19. '''''
20. If the distance detected by the ultrasound is less than the obstacle avoidance distance, turn left, or turn

right
21. '''
22. move.move(100, 'no', 'left', 0.5)
23.

175

24. else:
25. '''''
26. If the distance detected by the ultrasound is greater than the obstacle avoidance distance, move forward
27. '''
28. move.move(100, 'forward', 'no', 0.5)
29. time.sleep(0.1)
30.
31. while 1:
32. automaticProcessing()
• The above code calls the move() function in move.py to control the movement of

the robot, move(speed, direction, turn, radius), where speed is used to set the speed of the

robot, the maximum value is 100, and the minimum value is 0. This speed regulation

method actually changes the voltage of the motor port through PWM. In the actual test,

rewriting this value has little effect on the limit speed, but has a greater effect on the

acceleration. When the value is too small, the motor will lose energy and load due to the

deceleration mechanism. It may cause it to not produce enough torque to rotate.

•Direction is used to set the moving direction of the robot, which can be set

to'forward','backward' or'no':

-When set to forward, the robot moves forward

-When set to backward, the robot moves backward

-When set to no, the robot will not move back and forth. At this time, if the turn

variable is also no, the robot will stop moving

•Turn is used to set the rotation movement of the robot, which can be set to left,

right or no:

-When set to left, if direction is no, the robot will turn left in place

-When set to left, if the direction is forward or backward, the robot will turn with a

turning radius. For details, refer to the introduction of the radius parameter below.

-When set to right, if direction is no, the robot will turn right in place

176

-When set to right, if the direction is forward or backward, the robot will turn with a

turning radius. For details, refer to the introduction of the radius parameter below.

-When set to no, if the direction is also no, the robot stops moving

•Radius is used to set the turning radius of the robot, which does not prevent the

motor from stalling due to insufficient torque. The radius parameter in our product

program does not play a practical role. We provide this interface. If your ground is very

smooth, you can rewrite it. The program uses the radius parameter to increase the

expressiveness of the robot:

The value of radius can be set to 0-1. It actually changes the speed difference

between the fast and slow motors of the steering movement with the turning radius. The

speed of the slower motor will be multiplied by the coefficient of radius to slow it down.

Principle The voltage of the motor is adjusted by PWM, so if this value is set incorrectly,

the motor with a lower speed may be blocked when the robot is turning.

177

14. How to Open the Real-time Video Screen of RaspTank

Pro

●This chapter does not introduce the OpenCV part first, only introduces how to see the real-time

picture of the Raspberry Pi camera on other devices.

●First download flask-video-streaming this project in the Raspberry Pi. You can download it

from Clone on GitHub or download it on your computer and then pass it to the Raspberry Pi. The

download command using the Raspberry Pi console is as follows:

sudo git clone https://github.com/miguelgrinberg/flask-video-streaming.git

●After downloading or transmitting flask-video-streaming in the Raspberry Pi, run the app.py in

flask-video-streaming:

cd flask-video-streaming

sudo python3 app.py

●Not to use sudo python3 flask-video-streaming / app.py to run, there will be an error that * .jpeg

is not found.

●Open the browser on the device on the same local area network as the Raspberry Pi (we use

Google Chrome to test), and enter the IP address of the Raspberry Pi plus the video streaming port

number: 5000 in the address bar, as shown in the following example:

192.168.3.157:5000

●Now you can see the page created by the Raspberry Pi on the browser of your computer or

mobile phone. Note that the default screen is not from the screen of the Raspberry Pi camera, but three

digital pictures cyclically playing 1, 2, 3

https://github.com/miguelgrinberg/flask-video-streaming
quot;https://github.com/miguelgrinberg/flask-video-streaming.git"

178

●If your page can log in and is playing a picture of 1 \ 2 \ 3 numbers in a loop, it means that the

flask-related programs are running normally. Next, you can make some modifications to app.py so that

it can display the Raspberry Pi on the page in real time. Camera screen.

sudo nano app.py

●Here we use nano that comes with Raspbian to open app.py for editing in the console. Since it

is just some operations for commenting and deleting comments, there is no need to use other IDEs for

editing.

• ●After opening the IDE, we comment out the code:

1. if os.environ.get('CAMERA'):
2. Camera = import_module('camera_' + os.environ['CAMERA']).Camera
3. else:
4. from camera import Camera
●You can comment out these lines of code by filling in # at the beginning of the code line, or you

can write a ''' at the beginning and end of the entire code to comment out a certain code. The relevant

code after the change is as follows:

1. # if os.environ.get('CAMERA'):
2. # Camera = import_module('camera_' + os.environ['CAMERA']).Camera
3. # else:
4. # from camera import Camera

179

or

1. '''
2. f os.environ.get('CAMERA'):
3. Camera = import_module('camera_' + os.environ['CAMERA']).Camera
4. lse:
5. from camera import Camera
6. '''
●Finally, uncomment the code that imports Camera from camera_pi,

1. # from camera_pi import Camera

delete in front of #, note that there is a space after the # here, and also delete, the changed code is

as follows:

1. from camera_pi import Camera

●The following is the complete code of the modified app.py:

1. #!/usr/bin/env python
2. from importlib import import_module
3. import os
4. from flask import Flask, render_template, Response
5.
6. # import camera driver
7. '''''
8. if os.environ.get('CAMERA'):
9. Camera = import_module('camera_' + os.environ['CAMERA']).Camera
10. else:
11. from camera import Camera
12. '''
13.
14. # Raspberry Pi camera module (requires picamera package)
15. from camera_pi import Camera
16.
17. app = Flask(__name__)
18.
19.
20. @app.route('/')
21. def index():
22. """Video streaming home page."""
23. return render_template('index.html')

180

24.
25.
26. def gen(camera):
27. """Video streaming generator function."""
28. while True:
29. frame = camera.get_frame()
30. yield (b'--frame\r\n'
31. b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
32.
33.
34. @app.route('/video_feed')
35. def video_feed():
36. """Video streaming route. Put this in the src attribute of an img tag."""
37. return Response(gen(Camera()),
38. mimetype='multipart/x-mixed-replace; boundary=frame')
39.
40.
41. if __name__ == '__main__':
42. app.run(host='0.0.0.0', threaded=True)
●After editing, press CTRL+X to launch the editing, and prompt whether to save the changes,

pressY and Entry after saving the changes.

●Then you can run app.py:

sudo app.py

●Open the browser on the device on the same local area network as the Raspberry Pi (we use

Google Chrome to test), and enter the IP address of the Raspberry Pi plus the video streaming port

number: 5000 in the address bar, as shown in the following example:

192.168.3.157:5000

●Now you can see the page created by the Raspberry Pi on the browser of your computer or

mobile phone. After loading successfully, the page will display the real-time image of the Raspberry

Pi camera.

181

●This feature uses projects from GitHub flask-video-streaming.

https://github.com/miguelgrinberg/flask-video-streaming

182

15. OpenCV Function

15.1 The principle of using multithreading to process video frames
• The OpenCV function is based on the GitHub project flask-video-streaming. We

changed the camera_opencv.py in this project to perform OpenCV related operations.

15.1.1 Single-threaded processing of video frames
•First, we introduce the process of single-threaded processing of video frames,

starting from the simple, so that you will better understand why OpenCV processes video

frames using multiple threads to operate, the process of single-threaded processing of

video frames is as follows:

183

• Process explanation: First obtain a frame from the camera, and then use OpenCV

to analyze the content of this frame. After the analysis is completed, the information that

needs to be drawn is generated, such as the center point of the target object, and the text

lamp information that needs to be generated on the screen. Then draw those elements on

the screen according to the generated drawing information, and finally display the

processed and drawn frame on the page.

•Using such a processing flow will result in the need to wait for the OpenCV-related

flow to process each frame of the captured frame. After this frame is displayed, the

second frame can be collected and then processed and analyzed. The drawback is that it

will seriously affect the frame rate of the video. , It becomes abnormally stuck.

15.1.2 Multi-threaded processing of video frames
• Next, introduce the process of multi-threaded processing of video frames:

184

• Process explanation: In order to improve the frame rate, we separate the analysis

task of the video frame from the acquisition-display process, put it in a background

thread for execution and generate drawing information.

• The complete code of camera_opencv.py that we changed to multiple threads is as

follows: (The code here is only for reference on the principle of multi-threading, and the

OpenCV function is deleted for visualization).

1. import os
2. import cv2
3. from base_camera import BaseCamera
4. import numpy as np
5. import datetime
6. import time
7. import threading
8. import imutils
9.
10. class CVThread(threading.Thread):
11. '''''
12. This class is used to process OpenCV's task of analyzing video frames in the background
13. '''

185

14. def __init__(self, *args, **kwargs):
15. self.CVThreading = 0
16.
17. super(CVThread, self).__init__(*args, **kwargs)
18. self.__flag = threading.Event()
19. self.__flag.clear()
20.
21.
22. def mode(self, imgInput):
23. '''''
24. This method is used to pass in video frames that need to be processed
25. '''
26. self.imgCV = imgInput
27. self.resume()
28.
29.
30. def elementDraw(self,imgInput):
31. '''''
32. Draw elements on the screen
33. '''
34. return imgInput
35.
36.
37. def doOpenCV(self, frame_image):
38. '''''
39. Add content to be processed by OpenCV here
40. '''
41. self.pause()
42.
43.
44. def pause(self):
45. '''''
46. Block the thread and wait for the next frame to be processed
47. '''
48. self.__flag.clear()
49. self.CVThreading = 0
50.
51. def resume(self):
52. '''''
53. Resuming the thread
54. '''
55. self.__flag.set()
56.
57. def run(self):
58. '''''
59. Processing video frames in a background thread

186

60. '''
61. while 1:
62. self.__flag.wait()
63. self.CVThreading = 1
64. self.doOpenCV(self.imgCV)
65.
66.
67. class Camera(BaseCamera):
68. video_source = 0
69.
70. def __init__(self):
71. if os.environ.get('OPENCV_CAMERA_SOURCE'):
72. Camera.set_video_source(int(os.environ['OPENCV_CAMERA_SOURCE']))
73. super(Camera, self).__init__()
74.
75. @staticmethod
76. def set_video_source(source):
77. Camera.video_source = source
78.
79. @staticmethod
80. def frames():
81. camera = cv2.VideoCapture(Camera.video_source)
82. if not camera.isOpened():
83. raise RuntimeError('Could not start camera.')
84. '''''
85. Instantiate CVThread()
86. '''
87. cvt = CVThread()
88. cvt.start()
89.
90. while True:
91. # read current frame
92. _, img = camera.read()
93.
94. if cvt.CVThreading:
95. '''''
96. If OpenCV is processing video frames, skip
97. '''
98. pass
99. else:
100. '''''
101. If OpenCV is not processing video frames, give the thread that processes the video frame a new

video frame and resume the processing thread
102. '''
103. cvt.mode(img)
104. cvt.resume()

187

105. '''''
106. Draw elements on the screen
107. '''
108. img = cvt.elementDraw(img)
109.
110. # encode as a jpeg image and return it
111. yield cv2.imencode('.jpg', img)[1].tobytes()
The above is the code principle of using multi-threading to process OpenCV. The

following OpenCV specific function introduction will skip the part of explaining multi-

threading and directly introduce the method of OpenCV processing video frames.

188

15.2 Preparation for OpenCV function development
• The real-time video transmission function comes from the open source project

[flask-video-streaming] of Github's MIT open source agreement.

• First, prepare two .py files in the same folder on the Raspberry Pi, the code is as

follows:

– app.py

1. #!/usr/bin/env python3
2.
3. from importlib import import_module
4. import os
5. from flask import Flask, render_template, Response
6.
7. from camera_opencv import Camera
8.
9. app = Flask(__name__)
10.
11. def gen(camera):
12. while True:
13. frame = camera.get_frame()
14. yield (b'--frame\r\n'
15. b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
16.
17.
18. @app.route('/')
19. def video_feed():
20. return Response(gen(Camera()),
21. mimetype='multipart/x-mixed-replace; boundary=frame')
22.
23.
24. if __name__ == '__main__':
25. app.run(host='0.0.0.0', threaded=True)

– base_camera.py

1. import time
2. import threading
3. try:
4. from greenlet import getcurrent as get_ident

189

5. except ImportError:
6. try:
7. from thread import get_ident
8. except ImportError:
9. from _thread import get_ident
10.
11.
12. class CameraEvent(object):
13. """An Event-like class that signals all active clients when a new frame is
14. available.
15. """
16. def __init__(self):
17. self.events = {}
18.
19. def wait(self):
20. """Invoked from each client's thread to wait for the next frame."""
21. ident = get_ident()
22. if ident not in self.events:
23. # this is a new client
24. # add an entry for it in the self.events dict
25. # each entry has two elements, a threading.Event() and a timestamp
26. self.events[ident] = [threading.Event(), time.time()]
27. return self.events[ident][0].wait()
28.
29. def set(self):
30. """Invoked by the camera thread when a new frame is available."""
31. now = time.time()
32. remove = None
33. for ident, event in self.events.items():
34. if not event[0].isSet():
35. # if this client's event is not set, then set it
36. # also update the last set timestamp to now
37. event[0].set()
38. event[1] = now
39. else:
40. # if the client's event is already set, it means the client
41. # did not process a previous frame
42. # if the event stays set for more than 5 seconds, then assume
43. # the client is gone and remove it
44. if now - event[1] > 5:
45. remove = ident
46. if remove:
47. del self.events[remove]
48.
49. def clear(self):
50. """Invoked from each client's thread after a frame was processed."""

190

51. self.events[get_ident()][0].clear()
52.
53.
54. class BaseCamera(object):
55. thread = None # background thread that reads frames from camera
56. frame = None # current frame is stored here by background thread
57. last_access = 0 # time of last client access to the camera
58. event = CameraEvent()
59.
60. def __init__(self):
61. """Start the background camera thread if it isn't running yet."""
62. if BaseCamera.thread is None:
63. BaseCamera.last_access = time.time()
64.
65. # start background frame thread
66. BaseCamera.thread = threading.Thread(target=self._thread)
67. BaseCamera.thread.start()
68.
69. # wait until frames are available
70. while self.get_frame() is None:
71. time.sleep(0)
72.
73. def get_frame(self):
74. """Return the current camera frame."""
75. BaseCamera.last_access = time.time()
76.
77. # wait for a signal from the camera thread
78. BaseCamera.event.wait()
79. BaseCamera.event.clear()
80.
81. return BaseCamera.frame
82.
83. @staticmethod
84. def frames():
85. """"Generator that returns frames from the camera."""
86. raise RuntimeError('Must be implemented by subclasses.')
87.
88. @classmethod
89. def _thread(cls):
90. """Camera background thread."""
91. print('Starting camera thread.')
92. frames_iterator = cls.frames()
93. for frame in frames_iterator:
94. BaseCamera.frame = frame
95. BaseCamera.event.set() # send signal to clients
96. time.sleep(0)

191

97.
98. # if there hasn't been any clients asking for frames in
99. # the last 10 seconds then stop the thread
100. if time.time() - BaseCamera.last_access > 10:
101. frames_iterator.close()
102. print('Stopping camera thread due to inactivity.')
103. break
104. BaseCamera.thread = None
• When you use subsequent tutorials to develop a certain OpenCV-related function,

you only need to put the corresponding camera_opencv.py in the same folder as the

app.py and base_camera.py, and then in the Raspberry Pi console Just run app.py.

• Open the browser with a device in the same local area network as the Raspberry Pi,

enter the IP address of the Raspberry Pi in the address bar, and visit port 5000. The

address is shown in the following example:

192.168.3.157:5000

192

15.3 Using OpenCV for color tracking

15.3.1 Color recognition and color space
•For the development preparation and operation of OpenCV functions, please refer

to 15.2.

• Create camera_opencv.py in the folder where app.py and base_camera.py in 15.2

are located. The code related to the OpenCV color tracking function introduced in this

chapter is written in camera_opencv.py.

• For safety, this routine does not control the movement of the motor or the steering

gear, but only outputs the result of OpenCV.

• We use OpenCV for color recognition using the HSV color space. Before

introducing the code, we first need to understand the color space and why we use the

HSV color space instead of the more common RGB color space for color recognition.

•Color space:

– Color space is the organization of colors. With the help of color space and physical

device testing, fixed analog and digital representations of colors can be obtained. The

color space can be defined by just picking some colors at will. For example, the Pantone

system just takes a set of specific colors as samples, and then defines the name and code

for each color; it can also be based on rigorous mathematical definitions, such as Adobe

RGB , SRGB.

• RGB color space:

-RGB adopts additive color mixing method, because it describes the ratio of various

"lights" to produce colors. Light starts from dark and continues to overlap to produce

colors. RGB describes the value of red, green and blue light. RGBA adds an alpha

channel to RGB to achieve transparency.

193

The common color spaces based on RGB mode are sRGB, Adobe RGB and Adobe

Wide Gamut RGB.

• HSV color space:

-HSV (Hue: Hue, Saturation: Saturation, Lightness; Value), also known as HSB (B

means Brightness) is commonly used by artists, because compared with the terms of

additive and subtractive color mixing, the concepts of hue, saturation, etc. are used to

describe colors More natural and intuitive. HSV is a variant of RGB color space, and its

content and color scale are closely related to its source-RGB color space

– Using the HSV color space in the OpenCV color recognition function can make

the recognition result more accurate, less affected by ambient light, and it is very

convenient to define the color range, because the color recognition is not a certain color,

but a certain color. A range of colors, so the HSV color space that is more in line with

human eye habits should be used for color recognition.

15.3.2 Color recognition and tracking process
• We can use this function to control the servo to make the camera aim at a certain

color object, the general process is as follows.

194

15.3.3 Specific code
• camera_opencv.py

1. import os
2. import cv2
3. from base_camera import BaseCamera
4. import numpy as np
5.
6. '''''
7. Set the target color, HSV color space
8. '''
9. colorUpper = np.array([44, 255, 255])
10. colorLower = np.array([24, 100, 100])
11.
12. font = cv2.FONT_HERSHEY_SIMPLEX
13.
14. class Camera(BaseCamera):
15. video_source = 0
16.
17. def __init__(self):
18. if os.environ.get('OPENCV_CAMERA_SOURCE'):

195

19. Camera.set_video_source(int(os.environ['OPENCV_CAMERA_SOURCE']))
20. super(Camera, self).__init__()
21.
22. @staticmethod
23. def set_video_source(source):
24. Camera.video_source = source
25.
26. @staticmethod
27. def frames():
28. camera = cv2.VideoCapture(Camera.video_source)
29. if not camera.isOpened():
30. raise RuntimeError('Could not start camera.')
31.
32. while True:
33. # read current frame
34. _, img = camera.read() #Get the images captured by the camera
35.
36. hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #Convert the captured image to HSV color space
37. mask = cv2.inRange(hsv, colorLower, colorUpper) #Traverse the colors in the target color range in

the HSV color space screen, and turn these color blocks into masks
38. mask = cv2.erode(mask, None, iterations=2) #Corrupt the small blocks of the mask (noise) in the

picture (the small blocks of color or noise disappear)
39. mask = cv2.dilate(mask, None, iterations=2) #Expand, change the large mask that was reduced in the

previous step to its original size
40. cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
41. cv2.CHAIN_APPROX_SIMPLE)[-2] #Find a few masks in the screen
42. center = None
43. if len(cnts) > 0: #If the number of entire masks in the screen is greater than one
44. '''''
45. Find the center point coordinates of the object of the target color and the size of the object in the

screen
46. '''
47. c = max(cnts, key=cv2.contourArea)
48. ((box_x, box_y), radius) = cv2.minEnclosingCircle(c)
49. M = cv2.moments(c)
50. center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
51. X = int(box_x)
52. Y = int(box_y)
53. '''''
54. Obtain the center point coordinates of the target color object and output it
55. '''
56. print('Target color object detected')
57. print('X:%d'%X)
58. print('Y:%d'%Y)
59. print('-------')
60.
61. '''''

196

62. Write text on the screen: Target Detected
63. '''
64. cv2.putText(img,'Target Detected',(40,60), font, 0.5,(255,255,255),1,cv2.LINE_AA)
65. '''''
66. Draw a frame around the target color object
67. '''
68. cv2.rectangle(img,(int(box_x-radius),int(box_y+radius)),
69. (int(box_x+radius),int(box_y-radius)),(255,255,255),1)
70. else:
71. cv2.putText(img,'Target Detecting',(40,60), font, 0.5,(255,255,255),1,cv2.LINE_AA)
72. print('No target color object detected')
73.
74. # encode as a jpeg image and return it
75. yield cv2.imencode('.jpg', img)[1].tobytes()
•You can set the color you want to recognize by changing colorUpper and

colorLower. It should be noted that the H value (hue) of the normal HSV color space is 0-

360, but in OpenCV, the H value range is 0- 180.

15.3.4 HSV color component range in OpenCV

HSV\Color Black Grey White Red Orange Yellow Green Cyan Blue Purple

H_min 0 0 0 0|156 11 26 35 78 100 125

H_max 180 180 180 10|180 25 34 77 99 124 155

S_min 0 0 0 43 43 43 43 43 43 43

S_max 255 43 30 255 255 255 255 255 255 255

V_min 0 46 221 46 46 46 46 46 46 46

V_max 46 220 255 255 255 255 255 255 255 255

197

15.4 Using OpenCV for visual line inspection

15.4.1 Visual inspection process

•For the development preparation and operation of OpenCV functions, please refer

to 15.2.

•Create camera_opencv.py in the folder where app.py and base_camera.py in 15.2

are located. The code related to the OpenCV visual line tracking function introduced in

this chapter is written in camera_opencv.py.

• • For safety, this routine does not control the movement of the motor or the steering

gear, but only outputs the result of OpenCV.

15.4.2 Specific code
1. import os
2. import cv2
3. from base_camera import BaseCamera

198

4. import numpy as np
5. import time
6. import threading
7. import imutils
8.
9. '''''
10. Set the color of the line, 255 is the white line, 0 is the black line
11. '''
12. lineColorSet = 255
13. '''''
14. Set the reference horizontal position, the larger the value, the lower, but it cannot be greater than the vertical

resolution of the video (default 480)
15. '''
16. linePos = 380
17.
18. class Camera(BaseCamera):
19. video_source = 0
20. def __init__(self):
21. if os.environ.get('OPENCV_CAMERA_SOURCE'):
22. Camera.set_video_source(int(os.environ['OPENCV_CAMERA_SOURCE']))
23. super(Camera, self).__init__()
24.
25. @staticmethod
26. def set_video_source(source):
27. Camera.video_source = source
28.
29. @staticmethod
30. def frames():
31. camera = cv2.VideoCapture(Camera.video_source)
32. if not camera.isOpened():
33. raise RuntimeError('Could not start camera.')
34.
35. while True:
36. _, img = camera.read() #Get the image captured by the camera
37.
38. '''''
39. Convert the screen to black and white, and then binarize it (the value of each pixel in the screen is 255

except for 0)
40. '''
41. img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
42. retval, img = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)
43. img = cv2.erode(img, None, iterations=6) #Use corrosion to denoise
44. colorPos = img[linePos] #Get the array of pixel values ​ ​ of this line of linePos
45. try:
46. lineColorCount_Pos = np.sum(colorPos == lineColorSet) #Get the number of pixels of the line

color (line width)

199

47. lineIndex_Pos = np.where(colorPos == lineColorSet) #Get the horizontal position of the
endpoint of the line on the line of linePos

48. '''''
49. Use the endpoint position and line width to calculate the position of the line center point
50. '''
51. left_Pos = lineIndex_Pos[0][lineColorCount_Pos-1]
52. right_Pos = lineIndex_Pos[0][0]
53. center_Pos = int((left_Pos+right_Pos)/2)
54.
55. print(The position of the center point of the line is:%d'%center_Pos)
56. except:
57. '''''
58. If the line is not detected, the line width above is 0 as the denominator will cause an error, so you

know that no line is detected
59. '''
60. center_Pos = 0
61. print('No line detected')
62.
63. '''''
64. Draw a horizontal reference line
65. '''
66. cv2.line(img,(0,linePos),(640,linePos),(255,255,64),1)
67. if center_Pos:
68. '''''
69. If a line is detected, draw the center point of the line
70. '''
71. cv2.line(img,(center_Pos,linePos+300),(center_Pos,linePos-300),(255,255,64),1)
72.
73.
74. # encode as a jpeg image and return it
75. yield cv2.imencode('.jpg', img)[1].tobytes()

200

16. GUI Control Function
• Our old version of the robot program provides a desktop GUI program to control

the robot. The GUI program is written in Python, but this method has a high threshold

and difficulty, and it is not recommended for novices.

• This GUI program is currently only compatible with Windows systems, and is

included in the client directory of the robot software package, generally called GUI.py.

16.1 Installing GUI dependency libraries
• Install Python3:

–We need to install Python on the computer to run our PC-side programs. The code

of this product is developed and tested using Python3, so we need to download Python3.7

or above to prevent possible compatibility errors.

--Python3 download address

– After downloading Python, double-click the installation package to install it.

– When installing Python, be sure to select Add Python to PATH.

• Install Numpy:

-NumPy is a basic software package for scientific computing with Python, and

OpenCV needs to use its related functions.

-Press Win+R keys, enter cmd, and click OK to open CMD.

-Enter the following to install numpy:

pip3 install numpy

– – After the input is complete, press Entry to start downloading and installing

numpy.

201

• Install OpenCV:

-The same method as installing numpy.

– After opening CMD, enter the following:

pip3 install opencv-contrib-python

-After the input is complete, press Entry to start downloading and installing opencv.

• Install zmq and pybase64:

--Zmq and pybase64 are libraries for real-time video

– After opening CMD, enter the following:

pip3 install zmq pybase64

– -After the input is complete, press Entry to start downloading and installing

zmq and pybase64.

16.2 Introduction to the functions of the GUI control interface
•Since the web terminal and GUI are not connected, if you want to use GUI to

control robot products, you need to manually run server.py. (It is consistent with the

method of manually running webserver.py, except that the object is replaced by

server.py).

• When server.py in the Raspberry Pi runs successfully, enter the IP address of the

Raspberry Pi in the GUI control terminal on the PC, and then click Connect to control the

robot.

•Python running window: This window will appear accompanied by each GUI when

it is opened. Any runtime exceptions will be displayed here. If you close this window, the

GUI will be exited.

202

•Camera video stream window: display the screen captured by the camera.

Depending on the product type, the window rendering method may be different, and

some products can also interact with this window.

•IP address input box: Enter the IP address of the Raspberry Pi here, and click

Connect to connect the GUI to the Raspberry Pi.

• Raspberry Pi status and connection status display bar: Display some hardware

information and current connection status of the Raspberry Pi.

•Mobile control:

–Forward: Control the robot to move forward, shortcut key W.

–Backward: Control the robot to move backward, the shortcut key S.

–Left: Control the robot to turn left, shortcut key A.

-Right: Control the robot to turn right, shortcut key D.

• Robotic arm and camera control (due to the different layout, the shortcut keys here

are different from those of the WEB application):

-Up: Control the camera to move up, the shortcut key I.

-Down: Control the camera downward movement, shortcut key K.

–\: Control the rotation of the mechanical arm chuck, the shortcut key U.

–/: To control the rotation of the mechanical arm chuck, the shortcut key O.

--Grab: Control the rotation of the mechanical arm chuck, shortcut key J.

-Loose: Control the rotation of the mechanical arm chuck, the shortcut key L.

–<--: Control the robot arm forward, shortcut key Q.

---->: To control the robot arm backward, the shortcut key E.

203

-Home: Control all servos to return to the neutral position, shortcut key H.

16.3 Controlling LED lights via TCP communication
•You can communicate with the Raspberry Pi using the program with a graphical

interface you write on other devices to achieve the purpose of controlling the Raspberry

Pi.

• The GUI programming method introduced in this chapter is completely completed

by the Python language, specifically, the Tkinter library is used.

-Tkinter is the standard GUI library for Python. Python uses Tkinter to quickly

create GUI applications.

Since Tkinter is built into the python installation package, you can import the

Tkinter library as long as you install Python, and IDLE is also written in Tkinter, so

Tkinter can handle the simple graphical interface easily.

• We use the Socket library to communicate between devices. Socket is also called

"socket". Applications usually send requests to the network or respond to network

requests through "sockets", so that between hosts or processes on a computer Can

communicate.

• In this chapter, we take the remote control of LED lights as an example, because

almost all of our robots are equipped with WS 2812 LED modules. This simpler example

will also help novices understand how the desktop GUI program interacts with the

Raspberry Pi To communicate.

• Ready to burn Raspbian Raspberry Pi, related dependent libraries and connection

methods, you can refer to the WS2812 LED light tutorial to operate. If you don't use

RobotHAT, you can connect the signal port (IN) of WS2812 LED to GPIO12 (BCM 18)

of Raspberry Pi.

204

•For the detailed definition of Raspberry Pi pins, you can see this link to understand:

Raspberry Pi Pinout

• Install the Python library used to control the WS2812 LED lights. If you have not

installed it yet and have not run the installation script of the robot, you can use the

following command in the Raspberry Pi console to install:

sudo pip3 install rpi_ws281x

• We use the Raspberry Pi as the server and the PC as the client.

The program of the server in the Raspberry Pi is as follows:

1. '''
2. These two libraries are used to control WS2812 LED lights
3. '''
4. from rpi_ws281x import *
5. import argparse
6.
7. '''
8. Import the socket library used for TCP communication
9. '''
10. import socket
11.
12. '''
13. Some settings related to LED lights come from the WS281X routine
14. Source Code:https://github.com/rpi-ws281x/rpi-ws281x-python/
15. '''
16. LED_COUNT = 24
17. LED_PIN = 18
18. LED_FREQ_HZ = 800000
19. LED_DMA = 10
20. LED_BRIGHTNESS = 255
21. LED_INVERT = False
22. LED_CHANNEL = 0
23.
24. '''
25. Process arguments
26. '''
27. parser = argparse.ArgumentParser()
28. parser.add_argument('-c', '--clear', action='store_true', help='clear the display on exit')
29. args = parser.parse_args()
30.

205

31. '''
32. Create NeoPixel object with appropriate configuration.
33. '''
34. strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FPEQ_HZ, LED_DMA, LED_INVERT, LED_B

RIGHTNESS, LED_CHANNEL)
35.
36. '''
37. Intialize the library
38. '''
39. strip.begin()
40.
41. '''
42. Next is the configuration related to TCP communication, where PORT is the defined port number. You can

freely choose from 0-65535. It is recommended to choose the number after 1023, which needs to be consistent
with the port number defined by the client in the PC.

43. '''
44. HOST = ''
45. PORT = 10223
46. BUFSIZ = 1024
47. ADDR = (HOST, PORT)
48.
49. tcpSerSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
50. tcpSerSock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,1)
51. tcpSerSock.bind(ADDR)
52. tcpSerSock.listen(5)
53.
54. '''
55. Start monitoring the client connection, and start receiving the information sent from the client after the client

connection is successful
56. '''
57. tcpCliSock, addr = tcpSerSock.accept()
58.
59. while True:
60. data = ''
61.
62. '''
63. Receive information from the client
64. '''
65. data = str(tcpCliSock.recv(BUFSIZ).decode())
66. if not data:
67. continue
68.
69. '''
70. Turn on the light if the information content is on
71. If the information content is off, turn off the light
72. '''
73. elif 'on' == data:

206

74. for i in range(strip.numPixels()):
75. strip.setPixelColor(i, Color(255, 0, 255))
76. strip.show()
77. elif 'off' == data:
78. for i in range(strip.numPixels()):
79. strip.setPixelColor(i, Color(0, 0, 0))
80. strip.show()
81.
82. '''''
83. Finally print out the received data, and continue to monitor the next message sent by the client
84. '''
85. print(data)

The client program on the PC is as follows:

1. '''
2. Import the socket library used for TCP communication
3. '''
4. from socket import *
5.
6. '''
7. Python uses Tkinter to quickly create GUI applications and instantiate them while importing
8. '''
9. import tkinter as tk
10.
11. def lights_on():
12. '''
13. Call this method to send the light-on command'on'
14. '''
15. tcpClicSock.send(('on').encode())
16.
17. def lights_off():
18. '''
19. Call this method to send the light off command'off'
20. '''
21. tcpClicSock.send(('off').encode())
22.
23. '''
24. Enter the IP address of the Raspberry Pi here
25. '''
26. SERVER_IP = '192.168.3.35'
27.
28. '''

207

29. Next is the configuration related to TCP communication, where PORT is the defined port number. You can
freely choose from 0-65535. It is recommended to choose the number after 1023, which needs to be consistent
with the port number defined by the server in the Raspberry Pi

30. '''
31. SERVER_PORT = 10223
32. BUFSIZ = 1024
33. ADDR = (SERVER_IP, SERVER_PORT)
34. tcpClicSock = socket(AF_INET, SOCK_STREAM)
35.
36. tcpClicSock.connect(ADDR)
37.
38. '''
39. The following is part of the GUI
40. '''
41. root = tk.Tk() # Define a window
42. root.title('Lights') # Title of the window
43. root.geometry('175x55') # The size of the window, the x in the middle is the English letter x
44. root.config(bg='#000000') # Define the background color of the window
45.
46. '''
47. Use Tkinter's Button method to define a button, the button is on the root window, the name on the button

is'ON', the text color of the button is #E1F5FE, and the background color of the button is #0277BD. When the
button is pressed, call lights_on() function

48. '''
49. btn_on = tk.Button(root, width=8, text='ON', fg='#E1F5FE', bg='#0277BD', command=lights_on)
50.
51. '''
52. Choose a location to place this button
53. '''
54. btn_on.place(x=15, y=15)
55.
56. '''
57. Define another button in the same way. The difference is that the text on the button is changed to'OFF'. When

the button is pressed, the lights_off() function is called
58. '''
59. btn_off = tk.Button(root, width=8, text='OFF', fg='#E1F5FE', bg='#0277BD', command=lights_off)
60.
61. btn_off.place(x=95, y=15)
62.
63. '''
64. Finally open the message loop
65. '''
66. root.mainloop()
• We first run the program in the Raspberry Pi, and then open the program on the PC

(first run the server and then the client).

208

• Click "ON", the light is on, and "on" is printed out in the terminal of Raspberry Pi,

indicating that the program runs successfully.

209

17. How to Use OpenCV to Open Real-time Video Screen
●This chapter introduces real-time video transmission, which can transmit the images collected

by the camera to other places in real time for displaying images or handing it to the host computer for

machine vision processing.

●The software functions of this tutorial are based on opencv, numpy, zmq (read Zero MQ) and

base64 libraries. Before writing the code, you need to install these libraries.

pip3 install opencv-contrib-python numpy zmq pybase64

●In this tutorial, the hardware mainly uses a PC and a Raspberry Pi with a camera installed,

because it can introduce the installation methods of related libraries on the Windows platform and

Linux platform at the same time.

●OpenCV is an open source computer vision library. In the Linux system, you can enter in the

terminal:

sudo apt-get install -y libopencv-dev python3-opencv

●In the windows system, you can install it by downloading the .whl file of opencv, or you can

use the following command in the terminal to install OpenCV:

pip3 install opencv-contrib-python

●NumPy is a basic software package for scientific calculations using Python. In Linux, install

numpy by typing sudo pip3 install numpy in the terminal.

●In Windows, install numpy by typing pip3 install numpy on the command line (cmd) (need to

install python3.x in advance).

●zmq and base64 are used for frame transmission and frame encoding and decoding respectively

in this project. In linux, enter sudo pip3 install zmq pybase64 to install, and in windows, enter pip3

install zmq pybase64 to install.

●After installing the relevant libraries, let's explain the program of the video sending end. The

RPiCam.py python program is used to collect the pictures from the camera, and encode the collected

pictures to the receiving end of the video. So we put RPiCam.py into the Raspberry Pi and run it.

210

●RPiCam.py:

1. '''
2. First import the required libraries, the above has a specific introduction to these libraries
3. '''
4. import cv2
5. import zmq
6. import base64
7. import picamera
8. from picamera.array import PiRGBArray
9.
10. '''
11. Here we need to fill in the IP address of the video receiver (the IP address of the PC）
12. '''
13. IP = '192.168.3.11'
14.
15. '''
16. Then initialize the camera, you can change these parameters according to your needs
17. '''
18. camera = picamera.PiCamera()
19. camera.resolution = (640, 480)
20. camera.framerate = 20
21. rawCapture = PiRGBArray(camera, size=(640, 480))
22.
23. '''
24. Here we instantiate the zmq object used to send the frame, using the tcp communication protocol, where 5555

is the port number
25. The port number can be customized, as long as the port number of the sending end and the receiving end are

the same
26. '''
27. context = zmq.Context()
28. footage_socket = context.socket(zmq.PAIR)
29. footage_socket.connect('tcp://%s:5555'%IP)
30. print(IP)
31.
32. '''
33. Next, loop to collect images from the camera, because we are using a Raspberry Pi camera, so

use_video_port is True
34. '''
35. for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
36.
37. '''
38. Since imencode () function needs to pass in numpy array or scalar to encode the image
39. Here we convert the collected frame to numpy array
40. '''
41. frame_image = frame.array

211

42.
43. '''
44. We encode the frame into stream data and save it in the memory buffer
45. '''
46. encoded, buffer = cv2.imencode('.jpg', frame_image)
47. jpg_as_text = base64.b64encode(buffer)
48.
49. '''
50. Here we send the stream data in the buffer through base64 encoding to the video receiving end
51. '''
52. footage_socket.send(jpg_as_text)
53.
54. '''
55. Clear the stream in preparation for the next frame
56. '''
57. rawCapture.truncate(0)
●In the following, we explain the program on the receiving end. Since the libraries used here are

cross-platform, PC.py can be run on a Windows computer or another Linux computer.

●PC.py :

1. '''
58. First import the required libraries
2. '''
3. import cv2
4. import zmq
5. import base64
6. import numpy as np
7.
8. '''
9. Here we instantiate the zmq object used to receive the frame
10. Note that the port number needs to be consistent with the sender's
11. '''
12. context = zmq.Context()
13. footage_socket = context.socket(zmq.PAIR)
14. footage_socket.bind('tcp://*:5555')
15.
16. while True:
17. '''
18. Received video frame data
19. '''
20. frame = footage_socket.recv_string()
21.
22. '''''
23. Decode and save it to the cache

212

24. '''
25. img = base64.b64decode(frame)
26.
27. '''
28. Interpret a buffer as a 1-dimensional array
29. '''
30. npimg = np.frombuffer(img, dtype=np.uint8)
31.
32. '''
33. Decode a one-dimensional array into an image
34. '''
35. source = cv2.imdecode(npimg, 1)
36.
37. '''
38. Display image
39. '''
40. cv2.imshow("Stream", source)
41.
42. '''
43. Generally, waitKey () should be used after imshow () to leave time for image drawing, otherwise the

window will appear unresponsive and the image cannot be displayed
44. '''
45. cv2.waitKey(1)
●When running the program, we first run RPiCam.py in the Raspberry Pi and PC.py in the PC to

see the real-time picture of the Raspberry Pi in the PC.

213

18. How to Use OpenV to Process Video Frames
●Due to the limited computing power of the Raspberry Pi, our OpenCV in the Raspberry Pi can

only guarantee a relatively high frame rate when implementing simple functions such as color

recognition and visual line inspection. If we need more complex machine vision functions , We need

to send the video frames that need to be analyzed to the device equipped with advanced GPU to

process, and finally send the processed results to the robot where the Raspberry Pi is located to

perform the corresponding operation, and the machine vision of the Raspberry Pi robot The ability is

stronger, thus achieving more advanced functions.

●We can refer to the content of 17 to send video frames to the host computer, or refer to the

content of 14 to let the Raspberry Pi put the video stream on a page, and the host computer obtains the

video stream from the page to analyze the video frame.

●The content of this chapter is based on 17. First, we open PC.py as follows:

1. '''
2. First import the required libraries
3. '''
4. import cv2
5. import zmq
6. import base64
7. import numpy as np
8.
9. '''
10. Here we instantiate the zmq object used to receive the frame
11. Note that the port number needs to be consistent with the sender's
12. '''
13. context = zmq.Context()
14. footage_socket = context.socket(zmq.PAIR)
15. footage_socket.bind('tcp://*:5555')
16.
17. while True:
18. '''
19. Received video frame data
20. '''
21. frame = footage_socket.recv_string()
22.
23. '''
24. Decode and save it to the cache
25. '''
26. img = base64.b64decode(frame)

214

27.
28. '''
29. Interpret a buffer as a 1-dimensional array
30. '''
31. npimg = np.frombuffer(img, dtype=np.uint8)
32.
33. '''
34. Decode a one-dimensional array into an image
35. '''
36. source = cv2.imdecode(npimg, 1)
37.
38. '''
39. Display image
40. '''
41. cv2.imshow("Stream", source)
42.
43. '''
44. Generally, waitKey () should be used after imshow () to leave time for image drawing, otherwise the

window will appear unresponsive and the image cannot be displayed
45. '''
46. cv2.waitKey(1)
●After source = cv2.imdecode (npimg, 1), you can use OpenCV to process the source, as shown

below is the routine for binarizing the real-time video image from the Raspberry Pi using the host

computer:

1. '''
2. First import the required libraries
3. '''
4. import cv2
5. import zmq
6. import base64
7. import numpy as np
8.
9. '''
10. Here we instantiate the zmq object used to receive the frame
11. Note that the port number needs to be consistent with the sender's
12. '''
13. context = zmq.Context()
14. footage_socket = context.socket(zmq.PAIR)
15. footage_socket.bind('tcp://*:5555')
16.
17. while True:
18. '''
19. Received video frame data
20. '''

215

21. frame = footage_socket.recv_string()
22.
23. '''
24. Decode and save it to the cache
25. '''
26. img = base64.b64decode(frame)
27.
28. '''
29. Interpret a buffer as a 1-dimensional array
30. '''
31. npimg = np.frombuffer(img, dtype=np.uint8)
32.
33. '''
34. Decode a one-dimensional array into an image
35. '''
36. source = cv2.imdecode(npimg, 1)
37.
38. '''
39. Display image
40. '''
41. cv2.imshow("Stream", source)
42.
43. '''
44. Generally, waitKey () should be used after imshow () to leave time for image drawing, otherwise the

window will appear unresponsive and the image cannot be displayed
45. '''
46. cv2.waitKey(1)

216

19. How to Turn on the UART of Raspberry Pi
●UART is a more commonly used communication protocol between devices. Using UART, you

can allow MCUs such as Arduino, STM32, or ESP32 to communicate with the Raspberry Pi, which

can make your robot more powerful.

●However, for some Raspberry Pis, the UART that is enabled by default is not a full-featured

UART, so you need to refer to the following steps to enable the full-featured UART. The following

parts are from the official documentation of the Raspberry Pi The Raspberry Pi UARTs.

●The SoCs used on the Raspberry Pis have two built-in UARTs, a PL011 and a mini

UART. They are implemented using different hardware blocks, so they have slightly

different characteristics. However, both are 3.3V devices, which means extra care must

be taken when connecting up to an RS232 or other system that utilises different voltage

levels. An adapter must be used to convert the voltage levels between the two protocols.

Alternatively, 3.3V USB UART adapters can be purchased for very low prices.

●By default, on Raspberry Pis equipped with the wireless/Bluetooth module

(Raspberry Pi 3 and Raspberry Pi Zero W), the PL011 UART is connected to the

Bluetooth module, while the mini UART is used as the primary UART and will have a

Linux console on it. On all other models, the PL011 is used as the primary UART.

●In Linux device terms, by default, /dev/ttyS0 refers to the mini UART, and

/dev/ttyAMA0 refers to the PL011. The primary UART is the one assigned to the Linux

console, which depends on the Raspberry Pi model as described above. There are also

symlinks: /dev/serial0, which always refers to the primary UART (if enabled), and

/dev/serial1, which similarly always refers to the secondary UART (if enabled).

19.1 Mini UART and CPU core frequency
●The baud rate of the mini UART is linked to the core frequency of the VPU on the

VC4 GPU. This means that, as the VPU frequency governor varies the core frequency,

the baud rate of the mini UART also changes. This makes the mini UART of limited use

in the default state. By default, if the mini UART is selected for use as the primary

https://www.raspberrypi.org/documentation/configuration/uart.md
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0183g/index.html

217

UART, it will be disabled. To enable it, add enable_uart=1 to config.txt. This will also fix

the core frequency to 250MHz (unless force_turbo is set, when it will be fixed to the VPU

turbo frequency). When the mini UART is not the primary UART, for example you are

using it to connect to the Bluetooth controller, you must add core_freq=250 to config.txt,

otherwise the mini UART will not work.

●The default value of the enable_uart flag depends on the actual roles of the UARTs,

so that if ttyAMA0 is assigned to the Bluetooth module, enable_uart defaults to 0. If the

mini UART is assigned to the Bluetooth module, then enable_uart defaults to 1. Note that

if the UARTs are reassigned using a Device Tree Overlay (see below), enable_uart

defaults will still obey this rule.

19.2 Disabling Linux's use of console UART
●In a default install of Raspbian, the primary UART (serial0) is assigned to the

Linux console. Using the serial port for other purposes requires this default behaviour to

be changed. On startup, systemd checks the Linux kernel command line for any console

entries, and will use the console defined therein. To stop this behaviour, the serial console

setting needs to be removed from command line.

●This can be done by using the raspi-config utility, or manually.

sudo raspi-config

●Select option 5, Interfacing options, then option P6, Serial, and select No. Exit

raspi-config.

●To manually change the settings, edit the kernel command line with sudo nano

/boot/cmdline.txt. Find the console entry that refers to the serial0 device, and remove it,

including the baud rate setting. It will look something like console=serial0,115200. Make

sure the rest of the line remains the same, as errors in this configuration can stop the

Raspberry Pi from booting.

●Reboot the Raspberry Pi for the change to take effect.

https://www.raspberrypi.org/documentation/configuration/raspi-config.md

218

19.3 UART output on GPIO pins
●By default, the UART transmit and receive pins are on GPIO 14 and GPIO 15

respectively, which are pins 8 and 10 on the GPIO header.

19.4 UARTs and Device Tree
●Various UART Device Tree Overlay definitions can be found in the kernel github

tree. The two most useful overlays are disable-bt and miniuart-bt.

●disable-bt disables the Bluetooth device and restores UART0/ttyAMA0 to GPIOs 14

and 15. It is also necessary to disable the system service that initialises the modem so it

doesn't use the UART: sudo systemctl disable hciuart.

●miniuart-bt switches the Raspberry Pi 3 and Raspberry Pi Zero W Bluetooth

function to use the mini UART (ttyS0), and restores UART0/ttyAMA0 to GPIOs 14 and

15. Note that this may reduce the maximum usable baudrate (see mini UART limitations

below). It is also necessary to edit /lib/systemd/system/hciuart.service and replace

ttyAMA0 with ttyS0, unless you have a system with udev rules that create /dev/serial0

and /dev/serial1. In this case, use /dev/serial1 instead because it will always be correct. If

cmdline.txt uses the alias serial0 to refer to the user-accessible port, the firmware will

replace it with the appropriate port whether or not this overlay is used.

●There are other UART-specific overlays in the folder. Refer to

/boot/overlays/README for details on Device Tree Overlays, or run dtoverlay -h overlay-

name for descriptions and usage information.

●For full instructions on how to use Device Tree Overlays see this page. In brief, add

a line to the config.txt file to enable Device Tree Overlays. Note that the -overlay.dts part

of the filename is removed.

...

dtoverlay=disable-bt

...

https://github.com/raspberrypi/linux/blob/rpi-4.11.y/arch/arm/boot/dts/overlays/disable-bt-overlay.dts
https://github.com/raspberrypi/linux/blob/rpi-4.11.y/arch/arm/boot/dts/overlays/miniuart-bt-overlay.dts
https://www.raspberrypi.org/documentation/configuration/device-tree.md

219

19.5 Relevant differences between PL011 and mini UART

The mini UART has smaller FIFOs. Combined with the lack of flow control, this makes

it more prone to losing characters at higher baudrates. It is also generally less capable

than the PL011, mainly due to its baud rate link to the VPU clock speed.

The particular deficiencies of the mini UART compared to the PL011 are :

• No break detection

• No framing errors detection

• No parity bit

• No receive timeout interrupt

• No DCD, DSR, DTR or RI signals

Further documentation on the mini UART can be found in the SoC peripherals document

here.

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf

220

20. How to Display Information on the OLED Screen
This product is equipped with an OLED screen to display some information, you can

customize the content displayed on the screen by the code.

●The code related to the OLED screen is in [robot_name]/server/OLED.py.

1. '''
47. Import the libraries needed to control the OLED screen
2. '''
3. from luma.core.interface.serial import i2c
4. from luma.core.render import canvas
5. from luma.oled.device import ssd1306
6. import time
7.
8. '''
48. Import multi-threaded library
9. '''
10. import threading
11.
12. '''
49. Connect to OLED screen, the default drive address is 0X3C
13. '''
14. try:
15. serial = i2c(port=1, address=0x3C)
16. device = ssd1306(serial, rotate=0)
17. except:
18. print('OLED disconnected\nOLED没有连接')
19.
20. '''
50. OLED screen can display 6 lines of text, here set the initial content of each line of text
21. '''
22. text_1 = 'HELLO WORLD'
23. text_2 = 'IP:CONNECTING'
24. text_3 = '<ARM> OR <PT> MODE'
25. text_4 = 'MPU6050 DETECTING'
26. text_5 = 'FUNCTION OFF'
27. text_6 = 'Message:None'
28.
29.
30. '''
51. Multithreading is used here to control the OLED screen, so that the OLED screen will not be blocked in other

programs.
31. '''
32. class OLED_ctrl(threading.Thread):

221

33. def __init__(self, *args, **kwargs):
34. super(OLED_ctrl, self).__init__(*args, **kwargs)
35. self.__flag = threading.Event() #The flag used to pause the thread
36. self.__flag.set() # Set to True
37. self.__running = threading.Event() # The flag used to stop the thread
38. self.__running.set() # Set running to True
39.
40. def run(self):
41. '''
42. This is the content the thread specifically executes
43. '''
44. while self.__running.isSet():
45. self.__flag.wait() # Return immediately when it is True, block when it is False until the internal flag

is True
46. with canvas(device) as draw:
47. '''
48. Use the draw function to write text on the screen, which requires three parameters, the first is the

position parameter, the second is the text content, and the third is the text color
49. The OLED we use is a monochrome OLED screen, so the third parameter is'white'
50. '''
51. draw.text((0, 0), text_1, fill="white")
52. draw.text((0, 10), text_2, fill="white")
53. draw.text((0, 20), text_3, fill="white")
54. draw.text((0, 30), text_4, fill="white")
55. draw.text((0, 40), text_5, fill="white")
56. draw.text((0, 50), text_6, fill="white")
57. print('loop')
58. '''
59. The thread hangs after changing the text content, waiting for the next command
60. '''
61. self.pause()
62.
63. def pause(self):
64. self.__flag.clear() # Set to False to let the thread block
65.
66. def resume(self):
67. self.__flag.set() # Set to True to stop the thread from blocking
68.
69. def stop(self):
70. self.__flag.set() # Resume the thread from the suspended state, if it has been suspended
71. self.__running.clear() # Set to False
72.
73. def screen_show(self, position, text):
74. '''
75. Change the content of a line by calling this function externally
76. '''

222

77. global text_1, text_2, text_3, text_4, text_5, text_6
78. if position == 1:
79. text_1 = text
80. elif position == 2:
81. text_2 = text
82. elif position == 3:
83. text_3 = text
84. elif position == 4:
85. text_4 = text
86. elif position == 5:
87. text_5 = text
88. elif position == 6:
89. text_6 = text
90. self.resume()
91.
92. if __name__ == '__main__':
93. screen = OLED_ctrl()
94. screen.start()
95. '''
96. Replace the text on the first line with'ROBOT'
97. '''
98. screen.screen_show(1, 'ROBOT')
99. while 1:
100. '''
101. It should be noted that the program cannot be exited, because the exit will cause the screen to

go out.
102. '''
103. time.sleep(10)
104. pass

223

21.How to Control RaspTank Pro 140 via Mobile APP
●If you want to use a mobile phone or tablet to control the robot, we first recommend that you

use the WEB application to control the robot, because the WEB application has more functions,

maintenance and updates are more frequent, and most importantly, the WEB application can be cross-

platform No matter whether you use Android system or iOS system, as long as Google Chrome is

installed, you can use the WEB application to control the robot.

●For the usage method of WEB application, please refer to Lesson 3

●Our old version of the robot program is equipped with the method of using the mobile phone

APP to control, but the mobile phone APP only supports Android phones and cannot use the functions

related to the Raspberry Pi camera. The program corresponding to this function in the Raspberry Pi is

appserver.py

●You can find the download address of the mobile APP in our official website. The installation

method is the same as that of the ordinary mobile phone APP.

●Open the mobile app, enter the IP address of the Raspberry Pi in the IP address field of the

mobile app, and enter 10123 in the port number. Click Connect.

●It should be noted that the port number when using the WEB application is 5000, the port

number when using the GUI program is 10223, and the port number when using the mobile APP is

10123.

●The controller on the left can control the robot to move back and forth, left and right, and the

controller on the right can control other movements of the robot. You can change the specific

operation by editing appserver.py.

https://www.adeept.com/learn/detail-41.html

224

225

226

22. How to Turn on the Raspberry Pi Hotspot
●The method of turning on the WIFI hotspot in our robot product uses a project from GitHub

create_ap. Our installation script will automatically install this program and related dependent libraries.

If you have not run our installation script, you can use the following command to install create_ap:

sudo git clone https://github.com/oblique/create_ap.git cd

create_ap

sudo make install

●Install related dependent libraries:

sudo apt-get install -y util-linux procps hostapd iproute2 iw haveged dnsmasq

●Before turning on the hotspot, your Raspberry Pi cannot be connected to WIFI, and the WIFI

module cannot be turned off, so when you test the hotspot function, you need to connect the necessary

peripherals for the Raspberry Pi.

●Under normal circumstances, if the robot program is not connected to the WIFI when it is

turned on, it will automatically turn on the hotspot. You can use your phone or computer to search for

the WIF named Adeept. The default password is 12345678. Once the connection is successful, you

can log in to 192.168 using a browser .12.1: 5000 to open the WEB application to control the robot.

●If your Raspberry Pi is connected to peripherals, and you want to test the Raspberry Pi ’s ability

to turn on hotspots, you can click the WIFI icon in the upper right corner of the Raspberry Pi ’s

desktop, click the name of the connected WIFI, click forget, and never turn Off WIFI, if it is already in

the off state, you need to turn it on.

●When the WIFI module of the Raspberry Pi is turned on and is not connected to any known

network, you can enter the following command on the console to turn on the WIFI:

sudo create_ap wlan0 eth0 Adeept 12345678

●Adeept is the name of the WIFI hotspot, 12345678 is the password of the WIFI hotspot.

https://github.com/oblique/create_ap
https://github.com/oblique/create_ap

227

Common Problems and Solutions (Q&A)
●Where to find the IP address of the Raspberry Pi?

Before connecting the Raspberry Pi via SSH, you need to know the IP address of the

Raspberry Pi. Check the Management interface for your router, or download the app

`Network Scanner` -> search for a device named `RASPBERRY` or `Raspberry Pi

Foundation` to get the IP address.

For other methods of obtaining the IP address of Raspberry Pi, refer to the

official documentation [IP Address]

●Errors occur with `permission denied` prompt when I manually run `server.py` or

`webServer.py`.

The Raspberry Pi needs the root permission to run the dependent libraries for

WS2812 LED lights control.

You need to add `sudo` to the beginning of `server.py` or `webServer.py` to run

the program.

sudo python3 [PATH]/server.py

sudo python3 [PATH]/webServer.py

●I can't create the hots pot for the robot.

You need to use the open source project create_ap to setup the robot's hotspot.

Prior to use, disconnect WiFi network but DO NOT turn the WiFi module off, or the

create_ap will show an error of hardware being blocked.

●The servo rotates to an abnormal degree.

Before assembling the rocker arm and servo, you need to make the servo gears

rotate to the central position of its rotating range. Then assemble the rocker arm based on

the angle instructed in the documentation. There can be a deviation of less than 9° due to

https://www.raspberrypi.org/documentation/remote-access/ip-address.md

228

the structure of the servo (number of teeth is 20 for the servo gears). For better

performance, you may refer to the servo control documentation for initial degree

adjustment by code.

●The servo is shaking.

Probably the servo reducing gear is broken.

●Raspberry Pi can't boot.

Remove all parts on the driver board. Only connect the board to Raspberry Pi

and power supply, reboot.

●"Remote side unexpectedly closed network connection" shows on a popup

window.

There can be error prompts during installation because the Raspberry Pi will

auto reboot after the installation, which will disconnect the board.

●Program crashes after double clicking on client.py or GUI.py.

Run the script by `python client.py` or `python GUI.py` in cmd and check the

error reports.

●How to initialize the servo's angle?

If you've finished software installation on the Raspberry Pi, just boot it up and

the servo will be initialized.

●I can connect to the Raspberry Pi terminal via SSH \ Raspberry Pi failed to

connect a WiFi.

The power supply methods will not influence control by SSH. Check whether

you've created the file `wpa_supplicant.conf` for multiple times. If yes, that's problem

causing SSH errors.

229

●Can I supply the Robot HAT and Raspberry Pi via USB?

A 2A output is required for a Raspberry Pi 3B, when at least 3A is needed for a

Raspberry Pi 4. You can use the USB power for software installation and testing, but it's

not suitable for high power module like servo or motor adjustment as it may result in low

voltage. It's recommended to use battery for power here.

●After installation, the robot shows no response when booting.

The `server.py` or `webServer.py` may not run due to some reasons. Try to

manually run `server.py` or `webServer.py` and check whether there's any error prompt.

●The servo doesn't return to the central position when connected to the driver

board.

In general, the Raspberry Pi will auto run `webServer.py` when booting, and

`webServer.py` will run and control the servo ports to send a signal of rotating to the

central position. When assembling the servo, you can connect it to any servo port anytime.

After connecting the servo to the port, the gears will rotate to the central position;

assemble the rocker arm to the servo, disconnect the servo from the port, and insert more

servos to repeat rocker arm assembly (all servos will be in the central position).

When the servo is powered on, try moving the rocker arm. If it can't be moved, it

indicates the program for the servo works; otherwise there's error for the servo program.

Run the line `[RobotName]/initPosServos.py` (replace `[RobotName]` with the folder

name of your robot's program) to make the servo rotate to the central position.

When booting (it may take 30-50s), it takes a while for the Raspberry Pi to

control PCA9685 to set signal of all servo ports for central position rotating.

●no cv2 error occurs when I manually run `server.py` or `webServer.py`.

OpenCV is not installed correctly. Type in the command sudo pip3 install

opencv-contrib-python in the Raspberry Pi to manually install OpenCV.

230

●When using a computer to copy ssh and wpa_supplicant.conf to the SD card, it

prompts that there is no SD card

If this happens, unplug the card reader and connect it to the computer.

●SSH can't connect, error WARNING: REMOTE HOST IDENTIFICATION HAS

CHANGED!

Enter the following in the command line and press Enter

ssh-keygen -R Add the Raspberry Pi's IP address

For example:

ssh-keygen -R 192.168.3.157

Then you can SSH to the Raspberry Pi again

●Raspberry Pi automatically restarts after booting / restart the robot once it starts to

move

If your robot automatically restarts after powering on, or disconnects and restarts

when the robot starts to move after normal power on, it is likely because your power

supply does not output enough current, and the robot will automatically run the program

when it starts Put all the servos in the neutral position, the voltage drop caused by this

process causes the Raspberry Pi to restart.

We have tested that when using 7.4V power supply, the peak current of the robot

is about 3.75A, so you need to use support 4A output battery.

●The direction of servo movement is incorrect

Due to the different batches of servos, when the same angle change trend is

given to the servos, the actual direction of motion of the servos may be opposite. We

have set an interface to adjust the direction of the servos in the program. You need to

231

open RPIservo.py, Find the array sc_direction in ServoCtrl. If the direction of the servo

of port 3 is reversed, change the fourth 1 to -1.

(The serial number of the array starts from zero, so port 3 corresponds to the fourth 1).

If the servo direction of port 3 is not correct:

Before modification:

self.sc_direction = [1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1]

After modification (the serial number of the array starts from zero, so port 3

corresponds to the fourth 1):

self.sc_direction = [1,1,1,-1, 1,1,1,1, 1,1,1,1, 1,1,1,1]

●Motor movement direction is incorrect

Due to the different batches of motors, when the same signal is given, the

direction of rotation of the motor may be different. We have set an interface to adjust the

direction of rotation of the motor in the program. You need to open move.py. In the

program part, you can see To the following variable definitions:

Dir_forward = 0

Dir_backward = 1

left_forward = 0

left_backward = 1

right_forward = 0

right_backward = 0

If all your motor actions are reversed, just change Dir_forward = 0 to

Dir_forward = 1,Just change Dir_backward = 1 to Dir_backward = 0

232

If you only have one motor reversed, you only need to change the

corresponding set of variables.

●After running the server, I get an error and can't find config.txt

This is because the installation script did not copy con fi g.txt to the specified

location due to permissions problems during installation. The new version of webServer

will not use this file, only the old version of the server will use it. Copy the server folder

of the Raspberry Pi to / etc / of the Raspberry Pi, use the following command

sudo cp -f //home/pi/adeept_rasptank/server/config.txt //etc/config.txt

Just replace adeept_rasptank above with your product name, we will take

Rasptank as an example here.

1

	Resources Link
	Premise
	1.STEAM and Raspberry Pi
	2.About the Documentation

	Introduction of RaspTank Pro Products
	1. About RaspTank Pro products

	1. Raspberry Pi
	1.1 Introduction to Raspberry Pi
	1.1.1 Raspberry Pi
	1.1.2 Raspberry Pi motherboard
	1.1.3 Operating system
	1.1.4 Programming language

	1.2 Introduction to GPIO
	1.2.1 What is GPIO
	1.2.2 Introduction of GPIO pins

	1.2 Introduction of Robot HAT Driver Board
	1.2.1Introduction of Robot HAT driver board
	1.2.2 Precautions for the use of Robot HAT driver

	2. Installing and Configuring Raspberry Pi System
	2.1 Downloading the installation software for the
	Raspberry Pi Imager is an image writing tool to SD
	2.2 Downloading the Raspberry Pi system Raspbian
	2.2.2 Method two:Manually downloading the image fi

	2.3 Burning the downloaded Raspberry Pi system to
	2.4 Starting the Raspberry Pi SSH service
	The method to enable the SSH in this documentation
	2.4.1 Method A: Enable SSH with peripherals

	2.5 Configure WiFi on Raspberry Pi
	There are many ways to connect WiFi for Raspberry
	2.5.1 Method A: WiFi connection with peripherals
	4. After it's connected successfully, the WiFi wil
	2.5.2 Method A: WiFi connection without peripheral

	2.6 Remotely logging in to the Raspberry Pi system
	2.6.1 Obtaining the IP address of the Raspberry Pi
	2.6.2 Remotely logging in to the Raspberry Pi syst
	2.6.2.1 Putty
	2.6.2.2 MobaXterm
	2.6.2.3 Windows10, LInux and Mac OS comes with SS

	2.7 Downloading the Raspberry Pi robot product pro
	2.7.1 Downloading the Raspberry Pi robot product p
	2.7.2 Installing the dependency library of the rob

	3. Running the Program and WEB Control Interface
	3.1 Running the Raspberry Pi robot program
	3.2 Introduction to web control interface function
	3.2.1 Basic module
	3.2.2 Advanced Function Module

	4. Setting the Program to Run Automatically After
	4.2 Change the program that starts automatically

	5.How to Edit the Code Program in Raspberry Pi
	6. Controlling WS2812 LED to Change Color
	6.1 Components needed for this lesson
	6.2 Introduction of WS2812 RGB LED
	6.3 Circuit diagram (wiring diagram)
	6.4 How to control WS2812 LED
	6.4.1 Running the code

	6.5 Main code program

	7. Controlling the Servo
	7.1 Components needed for this course
	7.2 Introduction of servo
	7.3 Circuit diagram (wiring diagram)
	7.4.1 Running the code
	7.4.2 Main code program

	8. Controlling Motor to Rotate
	8.1 Components needed for this lesson
	8.2 Introduction of DC Motor
	8.3 Circuit diagram (wiring diagram)
	8.4 How to control Motor
	8.4.1 Running the code
	8.4.2 Main code program

	9.Reading the Data of the Ultrasonic Ranging Module
	9.1 Components needed for this lesson
	9.2 Introduction of Ultrasonic Ranging Module
	9.3 Circuit diagram (wiring diagram)
	9.4 Obtaining the data of the ultrasonic sensor
	9.4.1 Running the code
	9.4.2 Main code program

	10.RaspTank Pro Assembly Tutorial and Precautions
	10.1 Documentation for structure assembly
	10.2 Tips for structural assemblage
	10.3 Precautions for power supply during assembly
	10.4 Assembly
	10.4.1 Screw color description
	10.4.2 Robotic arm assembly
	10.4.3 Body assembly
	10.4.4 PTZ assembly
	10.4.5 Wiring method

	11.Controlling RaspTank Pro for Infrared Line Trac
	11. 1 Infrared line tracking module
	11.2 Preparation
	11.3 Running line tracking program
	11.4 Main code program

	12. Using Multithreading to Make Police Lights and
	12.1 Multi-threading introduction
	12.2 Realizing the WS2812 LED lighting effect with
	12.2.1 Running the line tracking program

	12.3 Main code program
	12.3.1 Realization of warning lights/breathing lig
	12.3.2 Using warning lights or breathing lights in

	13. Controlling RaspTank Pro to Automatically Avoi
	13.1 Introduction to Automatic Obstacle Avoidance
	13.2 Turning on automatic obstacle avoidance funct
	13.2.1 Running automatic obstacle avoidance progra

	13.3 Main code program

	15. OpenCV Function
	15.1 The principle of using multithreading to proc
	15.1.1 Single-threaded processing of video frames
	15.1.2 Multi-threaded processing of video frames

	15.2 Preparation for OpenCV function development
	15.3 Using OpenCV for color tracking
	15.3.1 Color recognition and color space
	15.3.2 Color recognition and tracking process
	15.3.3 Specific code
	15.3.4 HSV color component range in OpenCV

	15.4 Using OpenCV for visual line inspection
	15.4.1 Visual inspection process
	15.4.2 Specific code

	16. GUI Control Function
	16.1 Installing GUI dependency libraries
	16.2 Introduction to the functions of the GUI cont
	16.3 Controlling LED lights via TCP communication

	17. How to Use OpenCV to Open Real-time Video Scre
	18.How to Use OpenV to Process Video Frames
	19. How to Turn on the UART of Raspberry Pi
	19.1 Mini UART and CPU core frequency
	19.2 Disabling Linux's use of console UART
	19.3 UART output on GPIO pins
	19.4 UARTs and Device Tree
	19.5 Relevant differences between PL011 and mini U

	20.How to Display Information on the OLED Screen
	21.How to Control RaspTank Pro 140 via Mobile APP
	22. How to Turn on the Raspberry Pi Hotspot
	Common Problems and Solutions (Q&A)

